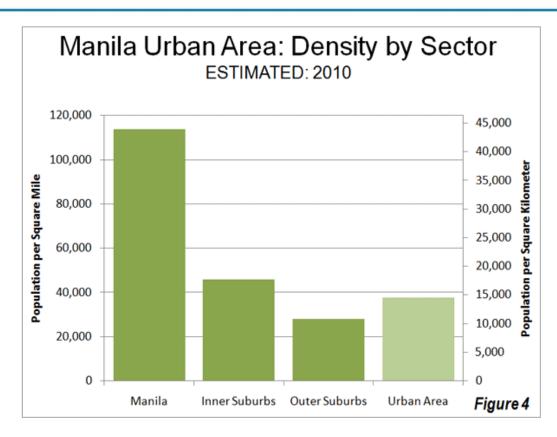
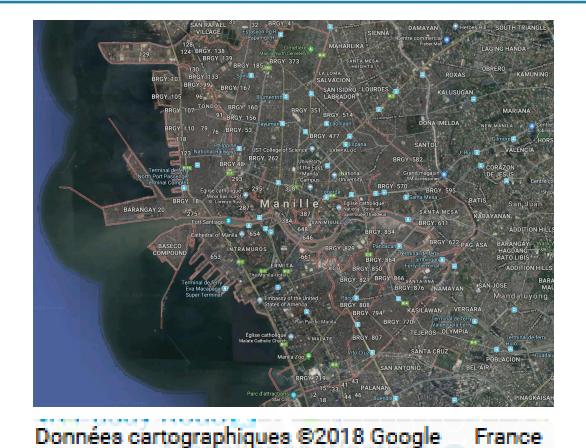

Aerobic Granular Sludge and Micro Screening: New Compact Solution for the Energy Neutral Wastewater Treatment Plant

Kim Soerensen CTO, WABAG

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Content


- Introduction
- Micropur®
- Nereda[®]
- Compact and Energy Neutral
- Conclusion



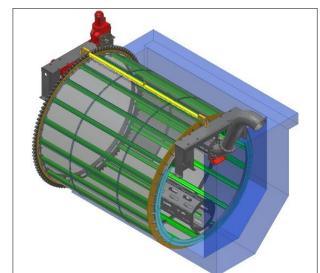
The need for Compact solutions – Extreme case Manila

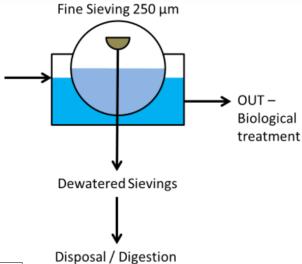
http://www.newgeography.com/content/002198-the-evolving-urban-form-manila

MICROPUR® - The smart alternative for primary treatment

Background – What is Micropur?

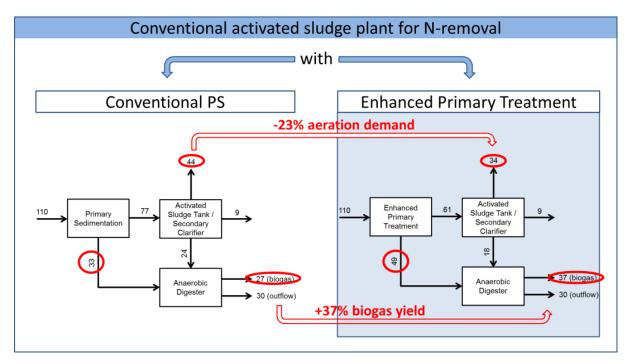
- compact advanced fine sieving technology with superior solids and organic substances
 removal and integrated screenings dewatering
- a drum sieve with integrated screw conveyor for screenings dewatering and a highly effective cleaning system
- typical Micropur application is the mechanical pre-treatment of raw WW




MICROPUR® - The smart alternative for primary treatment

Micropur Units?

- Freestanding unit
- Installation in a channel
- Fine sieve textures 250 μm 1000 μm
- Size varies from 1,6m dia x 3,0m L (freestanding), 2,4m dia x 4,5m L (channel)
- Q (depending on mesh size): 50-350 m³/h (free); 350-800 m³/h (channel)

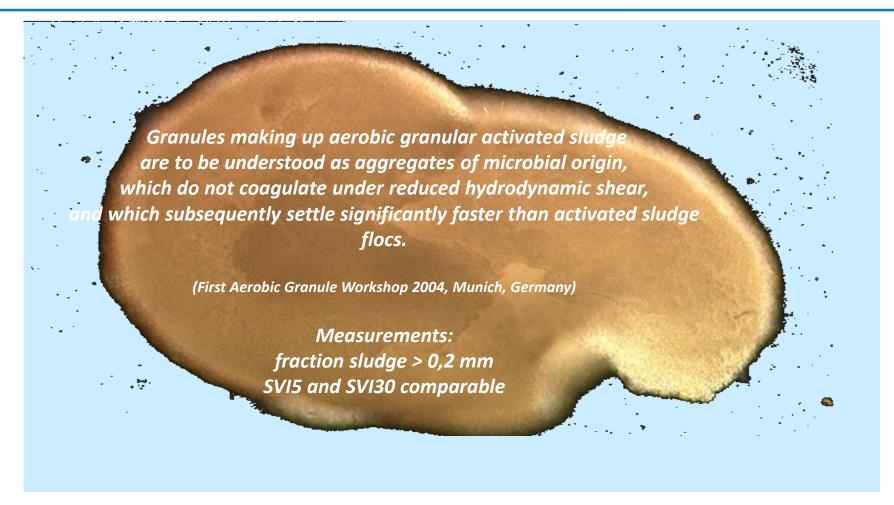


MICROPUR® - The smart alternative for primary treatment

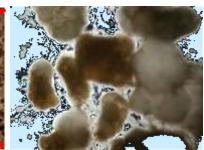
Removal Rates?

- Depending on mesh size and treatment concept of the WWTP!
- Effluent paramter?
- Energy optimization!

Target	Value		
Solid removal	50-70 %		
COD removal	35-45 %		
TP removal	10-12 %		
TN removal	10-12 %		
Fibres > 1.2 mm	> 95 %		
DS content of compacted sievings	3-35 %		



Aerobic Granular Sludge



Aerobic Granular Sludge

Activated Sludge Aerobic Granules

Excellent settling properties

Pure biomass

No support media

High MLSS levels (up to 15 g/L)

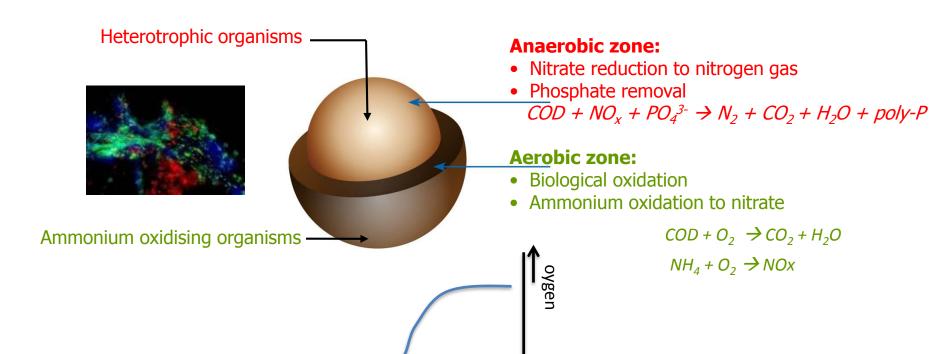
Reliable and stable operation

No bulking sludge



The Nereda®

- Simple one-tank concept
- No clarifiers
- No moving decanter
- No mixers
- Extensive biological COD, Nand P-removal
- Low energy consumption
- Easy operation



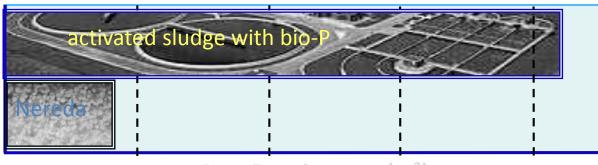
Principle of Nereda®

Oxygen gradient in granule simultaneous COD, P and N-removal

depth in granule

Key advantages Nereda®

- 50-75% smaller footprint:
 - high biomass concentration
 - no selectors, no anaerobic tanks, no clarifiers



Key advantages Nereda®

- 75% smaller footprint:
 - high biomass concentration
 - no selectors, no anaerobic tanks, no clarifiers

Area Requirement (m²)

- >20-25% energy savings:
 - less rotary equipment
 - efficient aeration

Nereda® Energy efficiency example Municipal wastewaster - full BNR - 100,000 P.E.

TABEL 31 ENERGIEVERBRUIK RWZI GARMERWOLDE

	Eenheid	A/B systeem 1)			Nereda ^{# 2)}
		2014	2015	2014	2015
Specifiek energieverbruik	kWh/(v.e. ₁₅₀ .jaar)	31,3	28,2	14,8	17,0
idem	kWh/m³	0,36	0,33	0,17	0,18
Influentbelasting 3)	v.e. ₁₅₀	176.000	186.000	116.000	135.000
idem	% influent	60,2	56,5	39,8	43,5

- 1) Inclusief Beluchtingsenergie Sharon installatie
- 2) Inclusief energieverbruik tussengemaal
- 3) Exclusief deel van "externe" stromen

Note that is an example based on a specific plant in Dutch climate achieving full BNR and that energy consumption for both technologies depends on wastewater characteristics, targeted effluent quality, design and equipment selection.

MICROPUR® + NEREDA® - Combined Space Savings

Example 140 MLD

- Traditional Primary Settler footprint 2500 m2 + Gravity Thickener
- MICROPUR 7 Machine's of $5.5 \times 4 \text{ m} = 154 \text{ m}^2$
- CAS
 - Aeration tank 5000 m2
 - Secondary Settler 5000 m2
- NEREDA Reactors 4000 m2
- Total Area Traditional Solution (Primary Settlers + Activated Sludge) > 12500 m2
- MICROPUR + NEREDA > 4200 m2

MICROPUR® + NEREDA® - Combined Energy Savings

• Typically a BNR plants with primary Settler having Anaerobic Digesters and CHP will achieve 50 – 70% energy self sufficiency

- MICROPUR will help Gain 10 20% more energy
- NEREDA has 20 25% less Energy consumption

This mean that the Combination should achieve from 75 – 110% Self sufficiency

Conclusion

- MICROPUR® and NEREDA® are compact and energy sufficient technologies
- The combination can potentially reduce the necessary footprint for building a BNR removal plant with 30 - 40% which very relevant when considering new Plants in the SEA Metropoles
- Combining MICROPUR® and NEREDA® with Anaerobic Digestion and CHP has the potential to eliminate the need for external energy for the WWTP's which could reduce the Total National Power Consumption with approx. 1%

