

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT

Agriculture and Rural Development

InfoSession 25 July 2018 | ADB, Manilla, Philippines

Session 2 - Optimize water use efficiency

EO4SD consortium, presented by Arjen Vrielink, Satelligence

The consortium of EO4SD – Agriculture and Rural Development

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

Setting the stage - World food production

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development J. Deckers - kuleuven European Space Agency

Setting the stage – irrigation as cornerstone of food security

Improved water management holds the key to sustainable production of food towards the world population in 2030.

Globally the entire sector is being challenged to produce approximately 70% more food to feed 9 billion people by 2050. It has been acknowledged that most of this increase will need to come from greater land and water productivity as well as expansion of arable and irrigated areas.

Achieving higher food production levels requires:

- the expansion of irrigated area
- improvement of crop productivity
- Improvement of irrigation efficiency

Irrigation is a cornerstone of food security and poverty reduction:

 Irrigation allows farmers to evolve from one rainfed crop per annum to one or two irrigated crop cycles in addition to one rainfed crop cycle

Mars 12-16, 2018

[→] EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

Role of Earth Observation

- Provide estimates of the already irrigated area acreage,
- Help identify land suitable for irrigation,
- Estimate the impact of land use change on the water balance by comparing actual crop water use with irrigation water requirements.
- Indicators like crop water consumption by evapotranspiration help to optimize water distribution by providing the spatial insight into the water use and needs of an irrigation system.
- Irrigation managers can monitor crop water consumption on a semi real-time basis, or alternatively they can evaluate accumulated numbers over an entire season, or analyse the spatial crop water consumption from year to year. This allows for precision farming at field and scheme scale.

Introduction: In the context of the Sustainable Development Goals

target 6.4: Substantially increase water use efficiency

target 2.4: Increasing agricultural productivity

target 15.3:

Combat desertification and achieve a land degradation neutral world

target 17.18: Increase the availability of high-quality,

timely, and

reliable data

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

Mars 12-16, 2018

EO can contribute to water management at:

Basin scale

(ie. Trends and anomalies in rainfall -> droughts, distribution of water)

System scale

(ie. Irrigation scheme management: head tail analysis, distribution of water, water allocation, irrigation efficiency, water productivity)

Field scale

(ie. In-field variations, irrigation advise, water productivity, crop development)

Evaluation

(ie. Irrigation performance, (water) productivity)

Indicators of irrigation performance

- Biomass production: Biomass production refers to the growth of total living plant material above and below the ground (such as stems, leaves, roots, fruits and grains). It is defined as *dry matter* and is measured as *incremental* biomass production per time step (kg/area/time step).
- Actual evapotranspiration: The quantity of water removed from the land surface through evaporation of water. (mm/time step)
- Biomass water productivity: The biomass water productivity shows how much (dry matter) biomass has been produced per unit of water (kg/m3) consumed by the crop. The biomass water productivity helps to determine pathways towards more crop per drop → Bio / ETact
- Evapotranspiration deficit: the difference between actual and potential ET, which reflects the crop's shortfall in what it can potentially achieve under ideal conditions. It is an indicator of plant stress (mm/time step) → ETpot ETact

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

February 5-9, 2018

Biomass Production

(kg/ha/timestep)

Crop Water Consumption

crop production (mm/timestep)

Definitions used

- <u>Potential Evapotranspiration (ET_{pot})</u>
 The quantity of water vaporization through stomata of the plant leaves if unlimited water were available.
- <u>Actual Evapotranspiration (ET_{act})</u>
 The quantity of water actually consumed by the crop growing process (E+T)
- <u>Evapotranspiration deficit (ET_{def})</u>
 The difference between actual transpiration and potential transpiration.
- \rightarrow All are satellite based
- \rightarrow All in mm/time step

(Biomass) Water Productivity

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

Water Productivity

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

Economic Water Productivity

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

Water .. Allocation? .. Use? .. Consumption?

...Depending who you talk to a different definition will be used... And they might all be right!

...Water allocations in the primary, secondary, tertiary or field canals (A,B,C,D)?

...Water quota per field? ...Per person? ...Per season?

...Water consumed by the plants growth process?

...What about irrigation efficiencies?

COMMUNICATION!

Droughts and water stress

From Earth Observation:

- Rainfall (anomalies)
- Evapotranspiration
- Evapotranspiration deficit
- Biophysical parameters such as vegetation cover and biomass production

Measuring agricultural production and productivity with EO – service examples

EO product	Pro	Con
Actual/ deficit evapotranspiration	 Quantitative measure of plant water consumption Independent of field data 	 Relatively complicated to generate Interpretation is difficult, especially when no crop map is available
Biomass production, NPP	 Quantitative measure of plant production Independent of field data 	 Relatively complicated to generate Interpretation is difficult, especially when no crop map is available
Crop yield	 Clear relation to existing datasets (agricultural output) 	 Difficult to generate Models are crop and location (and often also year) specific Field data needed
Biomass water productivity	 Shows agricultural productivity of water resources 	 See biomass production
Crop map	 Input for interpretation and analysis 	In situ data neededSmall fields hamper accuracy

WORLD BANK GROUP Syria IFAD Morocco LIFAD Ethiopia Paraguay **Burkina Faso** Uganda WORLD BANK GROUP Great gef Green LIFAD Wall **East Africa** Initiative ADB ASIA DB GAFSP LIFAD Cambodia **Bolivia**

EO4SD (local) demonstrations that showcase the continental potential

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

Assessment of irrigation suitability

Related projects:

Ethiopia	Sustainable land management project 2 (SLMP-2)
	2nd Agricultural Growth Project (AGP-2)
	Participatory Small-scale Irrigation Development Programme II (PASIDP II)
	Integrated Landscape Management to Enhance Food Security and Ecosystem Resilience in Ethiopia (GEF/IFAD IAP Food Security child project)

Irrigation suitabillity: decision tree

(1) Constraints | (2) Irrigation type | (3) Crop type | (4) Clustering

(1) Constraints Mask agricultural restrictions:

- steep slopes
- riverine corridors
- protected and urban areas
- degraded land
- unsuitable soils

Constraint map

(2) Irrigation type Create an irrigation type map (based on slope)

irrigation class 1 irrigation class 2 irrigation class 3 irrigation class 4 unsuitable

Mars 12-16, 2018

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT₁. 21 Agriculture and Rural Development Geoville

Irrigation suitability – decision tree (2)

(1) Constraints | (2) Irrigation type | (3) Crop type | (4) Clustering

Mars 12-16, 2018

(3) Crop type Determine suitability for crop types

(4) Clustering Sieve results (only select areas > 10 ha)

irrigation class 1
 irrigation class 2
 irrigation class 3
 irrigation class 4

Crop Class 5

Crop		T _{min}	T _{max}	T _{mean}	Crop class 4		
class		(°C)	(°C)	(°C)	unsuitable area		
1		10	27	17.4			
2		10	35	22.5	Mar Dent		
3		15	35	25.4			
4		5	35	20.0			
5	1	Potato, pea, cabbage, onion, shallot, wheat, sugarbeet, tomato,					
6	2	Sunflower, chick pea, green chili pepper, lentil, safflower, cotton, nigerseed, fingermillet, tomato					
	3	Maize, sorghum, soybean, sweet potato, tobacco, groundnut, paddy rice, water melon					
	4	Olive, grape, jatropha					
	5	Pine apple,	citrus, mango, co	offee, khat, lemor	n, peach		
	6	Sugarcane, alfalfa, banana, sesame, ginger, papaya, guava					

Irrigation suitability – decision tree (3)

	% irrig	% irrigated area in Northern Shewa suitable					
Irrigation			for cr	op clas	s:		Total area
class	1	2	3	4	5	6	(ha)
1	18	56	25	80	34	8	11,166
2	20	57	24	81	34	6	35,887
3	21	58	25	83	36	4	39,302
4	21	64	28	86	40	2	136,501
total	21	62	27	85	38	3	222,856

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

Mars 12-16, 2018

Production and water consumption per land cover

Kg/ha/month

- Generally production went down except for forest
- Water consumption increased for agriculture and grasslands and forest
- Biomass water productivity decreased except for forest

eleafø GeoVille

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

February 5-9, 201

Water consumption in agricultural areas (early Bega season) 15 Nov - 15 Dec 2017 (Non-agricultural areas in grey)

Agriculture and Rural Development

Agricultural productivity in Kembibit woreda 15 Nov - 15 Dec 2013 15 Nov - 15 Dec 2017 kg/ha/ month) 0 1500 3000 4500 6000 8000 10000 Non-agricultural areas in grey No obvious changes in biomass production between 2013 & 2017 2013 2017 (early Bega season) **Biomass production 15Nov-14Dec** 2000 3435 (kg/ha/month) 1500 kg/ha/month 1000 Increased productivity: 500 due to agricultural development and 4962 0 2013 2017 kg/ha/month introduction of irrigation? eleafø Geoville → EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

Agricultural water consumption in Kembibit woreda

15 Nov - 15 Dec 2013

15 Nov - 15 Dec 2017

Non-agricultural areas in grey

Agricultural water stress in Kembibit woreda

Service fact sheet

EO product	Constraints mapping	Irrigation type	Crop type	Soil moisture
Detail	medium/high			low
Period	Historic / NRT			Historic / NRT
Frequency	yearly/custom			Weekly/monthly/yearly/cu stom
Delivery type	Table/map/graph/report			Table/map/graph/report
Source	Open/Commercial			Open/Commercial
Cost range (USD)	on request			1-10 USD/ha 0.5-1.0 USD/km2, minimum order size 25,000 USD

EO indicator	Irrigation suitability	
Detail	low/medium/high	
Period	Historic / NRT	
Frequency	Daily/weekly/monthly/yearly/custom	
Delivery type	Table/map/graph/report	
Source	Open/Commercial	
Cost range (USD)	0 - x/unit/ example / on request	

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

Land titling and pricing

Related demonstrations:				
Bolivia	Rural Land Regularization and Titling Program (Land Administration Program II)			
	IAP Commodities			
→ EARTH OBSERVATIO Agriculture and Rura	N FOR SUSTAINABLE DEVELOPMENT Il Development European Space Agency			

Demonstration: Land cover

Map indicating suitability for utilisation purposes

Advantage: first assessment and comparison of different landscapes and their variety.

Support land allocation

Land Cover

Site utilisation suitability

Integrated value based on habitat quality and patch size.

Green areas indicate potential utilisation sites of low conservation value. Red indicates conservation priority sites not suitable for site utilisation.

Demonstration: cultivated area

Sentinel-2 10m (Santa Cruz)

Result

Demonstration: crop performance

Demonstration: crop performance

Demonstration: crop performance

Service fact sheet

EO product	Cultivated area	Soy area	Deforestation	Land cover
Detail	medium/high	medium/high	medium/high	medium/high
Period	Historic / NRT	Historic / NRT	Historic / NRT	Historic / NRT
Frequency	monthly/quarterly/yearly	monthly/quarterly/yearly	monthly/quarterly/yearly	monthly/quarterly/yearly
Delivery type	Table/map/graph/report	Table/map/graph/report	Table/map/graph/report	Table/map/graph/report
Source	Open/Commercial	Open/Commercial	Open/Commercial	Open/Commercial
Cost range (USD)	0,5 - 2,5 \$ / km2 / year	0,5 - 2,5 \$ / km2 / year	0,5 - 2,5 \$ / km2 / year	0,5 - 2,5 \$ / km2 / year

➡

EO indicator Deforestation impact		Land use distribution	
Detail	medium/high	medium/high	
Period	Historic / NRT	Historic / NRT	
Frequency	monthly/quarterly/yearly	monthly/quarterly/yearly	
Delivery type	Table/map/graph/report	Table/map/graph/report	
Source	Open/Commercial	Open/Commercial	
Cost range (USD)	0,5 - 2,5 \$ / km2 / year	0,5 - 2,5 \$ / km2 / year	

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development

Irrigational development and increased agricultural productivity

Related demonstrations:			
Myanmar	Irrigated Agriculture Inclusive Development Project (Asian Development Bank) Agricultural Development Support Project (World Bank)		

Crop area and crop pattern

Content

- Basic land cover
- Crop type
- Crop intensity

Geographic coverage

Central Dry Zone Myanmar

Temporal coverage

Seasonal 2016 - 2018

Spatial resolution

• 10 - 30m

Limitations

- Cloud cover and temporal gaps
- Ground truth availability

Agriculture change between 1988-2017 Gain in 1988-2017 Loss in 1988-2017 O No change 1988-201;

Crop area and crop pattern

Benefits

- Improved accuracy through the combination of optical & SAR imagery
- High resolution (10 30m)
- Monitoring intra-annual changes on a large scale

Impacts

- Contribute to a better understanding of the ongoing changes in crop type and pattern distribution, including crop intensity; help assess planned crop diversification and increase in irrigated areas; support improved seed supply and extension of good agricultural practices.
- Improved extension services, increased crop productivity and poverty reduction.

Crop area and crop pattern

Content

Monitoring of drought and crop water stress and requirements as input for irrigation management

Geographical coverage

Central Dry Zone Myanmar

Temporal coverage

Weekly to Monthly 2017 – 2019

Spatial resolution

Blend (250 – 5000m)

Limitations

 Validation of crop water requirements require in-situ observations at specific locations.

Drought monitoring and crop water requirements

Crop water requirement (current and forecasted)

Benefits

- Freely available web based portal
- The system is implemented with focus on national and regional catchments (250 – 5000m), but could later be extended with high resolution data.

Impact

 Specific utilization of satellite data providing added value for national stakeholders and decision makers

Flood frequency

Content

 Flood frequency supports development of agricultural risk management plans. When overlaid with maps of agricultural areas and critical (irrigation) infrastructure the historical flood maps can be used for impact and vulnerability assessments.

Geographical coverage

Central Dry Zone Myanmar

Temporal coverage

- Historical surface water 1980 2015
- Seasonal 2015 2018

Spatial resolution

■ 10 – 30m

Limitations

Cloud cover and temporal gaps

Flood frequency

Change in Flood Frequency for CDZ Wards

Benefits

- Multi-sensor approach allows for frequent information on flooding
- Improved accuracy through the combination of optical & SAR imagery
- High resolution

Impacts

- Allows detection of smaller than before water bodies
- Provides information on spatial and recurrence changes over time

Service fact sheet

EO product	Crop area and crop pattern	Drought monitoring and crop water requirements	Flood frequency
Detail	medium/high	low/medium (high possible on request	medium/high
Period	Historic / NRT	Historic / NRT / Forecast	Historic / NRT
Frequency	monthly/quarterly/yearly	daily/weekly/monthly	monthly/quarterly/yearly
Delivery type	Table/map/graph/report	Web based portal	Table/map/graph/report
Source	Open/Commercial	Open/Commercial	Open/Commercial
Cost range (USD)	0.5 - 2,5 \$ / km2 / year	On request	0.5 -2,5 \$ / km2 / year

┺

EO indicator	Risk alert	Design	M&E
Detail	medium/high	medium/high	medium/high
Period	Historic / NRT / Forecast	Historic / NRT / Forecast	Historic / NRT
Frequency	daily/weekly/monthly/quarterly/ yearly/customized	quarterly/yearly	daily/weekly/monthly/quarterly/ yearly/customized
Delivery type	Table/map/graph/report/web based portal	Table/map/graph/report/web based portal	Table/map/graph/report/web based portal
Source	Open/Commercial	Open/Commercial	Open/Commercial
Cost range (USD)	0,5 - 2,5 \$ / km2 / year, on request	0,5 - 2,5 \$ / km2 / year	0,5 - 2,5 \$ / km2 / year

Round table questions

- Evaluate requirements for successful embedment of EO services in the project cycle
- Discuss opportunities in upcoming projects and programmes for EO services
- Discuss what additional support from EO specialists is required
 - Access to (demo)services
 - Project preparation
 - $\circ~$ Capacity building

Thank you!

For more information http://eo4sd.esa.int/agriculture http://eo4sd.Lizard.net

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Agriculture and Rural Development