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Why are we worried about delivering a
low-carbon energy system?
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What are the issue with the energy trilemma?

* How will we deliver energy that is
— Sustainable (low to almost zero carbon)
— Reliable and secure

— Affordable
Affordability

Security of supply Decarbonisation




Let’s focus on reliability

Adequacy

— Do | have enough capacity in planning?

Security

— Do | have enough capacity in operation?

Flexibility
— Do I have fast enough capacity in operation?

Resilience

— Do | have enough capacity in the case of extreme events?




Who provides reliability today?
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Renewables and reliable capacity (adequacy):
an example from Germany

Reduction in energy generated by conventional plants in the market
Wind - infeed
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Renewables and flexibility:
the Californian “duck” curve
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What animal do you have at home?
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Renewables and security:
illustrative example for Australia
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lower inertia results in both lower frequency Nadir and shorter time to Nadir
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Who provides reliability today?
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Can we make a low-carbon system secure?
Modelling for the “Finkel Review”

Power system security assessment of
the future National Electricity Market

Areport by the
Melbourne Energy Institute
at the

University of Melbourne
in support of the

‘Independent Review into the
Future Security of the National Electricity Market’

June 2017

http://www.environment.gov.au/system/files/resources/1d6b0464-6162-4223-ac08-
3395a6bilc7fa/files/power-system-security-assessment.pdf

http://www.environment.gov.au/energy/publications/electricity-market-final-report
Workshop on Smart Grid Technologies and Implications for Inclusive Developmentin Sri Lanka ADB

THE UMIVERSITY OF
MELBOURNE



Frequency Response Security Maps

Frequency response security map
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Who will provide reliability tomorrow?
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Who will provide reliability tomorrow?
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Fast Frequency Response (FFR)
to support low-carbon system operation
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Do we really need batteries?
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=W “Virtual storage” in buildings:
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... or could we do this?
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... and finally this?
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Operational tools:
Frequency response security constrained OPF
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Techno-economic tools:

Covoepmentin Sri Lanka ADB
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Distributed energy at
edge of the value chain:
Challenges &
Opportunities

A. Monti, D. Persch, K. Ellis, K. Kouramas,
and P. Mancarella (eds.), “Energy positive
neighborhoods and smart energy
districts: methods, tools and experiences
from the field” , Elsevier, September
2016
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Techno-economic tools:
multi-service optimization

Change in retailer-aggregator cash flow, by commodity/service, £/year
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N. Good, E.A. Martinez-Cesena, and P. Mancarella, “Electrical Network Capacity Support
from Demand Side Response: Techno-Economic Assessment of Potential Business Cases
for Commercial and Residential End-Users”, Energy Policy, 2015

chain: challenges, opportunities, and Smart Grid solutions”, Wiley, 2016

A. Losi, P. Mancarella, and A. Vicino (eds.), “Integration of demand response into the electricity

N. Good, E.A. Martinez-Cesena, and P. Mancarella, “Techno-economic assessment and business case modelling of low carb
| technologies in distributed multi-energy systems”, Applied Energy,2016

Co-optimization of energy, FCAS, capacity and reactive power

BC1-Optimisationon  BC2-Optimisationon  BC3-Optimisation on  BC4-Optimisation on
Wholesale energy W'sale/Imbalance DUoS TUoS
energy

BC5-Optimisation on BC6-Optimisation on All
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Planning against uncertainty (and complexity):

What future do we plan for?

72
70
68
66
64

= 62
60
58
56
54
52

(courtesy of R Shaw, Electricity North West)

Average cold spell peak demand
National Grid Future Energy Scenarios —July 2015

rd

//

B \/\A/' Historic
— Gone Green
—Slow
Progression
No Progression
——Consumer
\ \ \ \ \ \ \ \ \ \
(o} e} o N < (o} o0} o N < O o0} o N < O Power
o o - — — — - N N N N N ™ ™ ™ ™
= = -~ -~ -~ ~ ~ ~ ~ ~ ~ ~ -~ ~ ~ ~
Lo N~ (o2} — 98] Lo N~ (o)} — ™ Lo N~ o)) - ™ Lo
o o o b - - - — AN N N N N ™ ™ ™
o o o o o o o o o o o o o o o o
N N N N N N N N N N N N N N N N
Workshop on Smart Grid Technologies and Implications for Inclusive Developmentin Sri Lanka

THE UNIVERSITY OF
MELBOURNE



Planning the Smart Grid:
Need for new Energy Policy modelling tools
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R. Moreno, A. Street, J.M. Arroyo, and P. Mancarella, “Planning Low-Carbon Electricity Systems under Uncertainty Considering
Operational Flexibility and Smart Grid Technologies”, Philosophical Trans. Royal Society A, June 2017



Planning the Smart Grid:
Need for new Energy Policy modelling tools

Scenario 4: high investment
cost of solar power generation

Scenario 3: mid-high investment
cost of solar power generation

Scenario 2: mid-low investment
cost of solar power generation

Scenario 1: low investment
cost of solar power generation

| §
| 4

Epoch Epoch Epoch Time
1 2 3
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Energy prices, Resource availability

Planning the whole energy system:
Need for new Energy Policy modelling tools
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R. Loulou and M. Labriet, “ETSAP-TIAM: the TIMES integrated assessment
model Part I: Model structure,”
Comput. Manag. Sci., vol. 5, no. 1-2, pp. 7-40, Feb. 2008

P. Mancarella et al., “Modelling of integrated multi-energy systems: drivers, requirements, and opportunities”, 19th Power Systems

Remme U. “Overview of TIMES: parameters, primal
variables & equations”, Proc. VETSAP Workshop

November 2007
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Computation Conference (PSCC), Genova, Italy, June 2016. Invited Plenary Contribution

Example of end-use demand in TIMES

Code Unit
Transportation segments (15)
Autos TRT Billion vehicle-km/year
Buses TRB Billion vehicle-km/year
Light trucks TRL Billion vehicle-km/year
Commercial trucks TRC Billion vehicle-km/year
Medium trucks TRM Billion vehicle-km/year
Heavy trucks TRH Billion vehicle-km/year
Two wheelers TRW Billion vehicle-km/year
Three wheelers TRE Billion vehicle-km/year
International aviation TAI Pliyear
Domestic aviation TAD Pliyear
Freight rail transportation TTF Pliyear
Passengers rail transportation TTP Pl/year
Internal navigation TWD Pliyear
International navigation (bunkers) TWI Pliyear
Non-energy uses in transport NEU Pliyear
Residential segments® (11)
Space heating RHI,RH2, RH3.RH4  Pl/year
Space cooling RC1,RC2, RC3, RC4 Pliyear
Hot water heating RWH Pliyear
Lighting RLI.RL2,RL3, RL4 Pliyear
Cooking RK1, RK2, RK3, RK4 Pliyear
Refrigerators and freezers RRF Pliyear
Cloth washers RCW Pliyear
Cloth dryers RCD Pliyear
Dish washers RDW Pliyear
Miscellaneous electric energy REA Pliyear
Other energy uses ROT Pliyear
Commercial segmknts“ (8)
Space heating CH1, CH2, CH3, CH4 Pl/year
Space cooling CCl1.CC2,CC3.CC4 Pliyear
Hot water heating CHW Pl/year
Lighting CLA Pliyear
Cooking CCK Pliyear
Refrigerators and freezers CRF Pliyear
Electric equipments COE Pliyear
Other energy uses COoT Pl/year

Agoricnlture seoment (173




Planning against the extreme:
Reliability or resilience?

Reliability Vs Resilience

Reliability Resilience

: High probability, low impact Low probability, high impact :
- § § ¥ § B N §® B B ® " B B ®" F B " FB F B " FR B " FREF"EFR B FR "R E R ER_E_E ]
Static Adaptive, ongoing, short and long term
Evaluates the power system states Evaluates the power system states and

transition times between states

Concerned with customer interruption Concerned with customer interruption
time time and the infrastructure recovery
time

M. Panteli and P. Mancarella, The Grid: Stronger, Bigger, Smarter? Presenting a conceptual framework of power
system resilience, IEEE Power and Energy Magazine, May/June 2015, Invited Paper.
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Can we define a resilience threshold?
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Rethinking fundamental approaches to planning:

- 7 »” o, 1,0 .
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The Resilience Trilemma

/ - Make the network more
Smarter: ) responsive (e.g. faster restoration),
self-adaptive, resourceful, etc.

M. Panteli and P. Mancarella, The
Grid: Stronger, Bigger, Smarter?
Presenting a conceptual framework
of power system resilience, IEEE
Power and Energy Magazine,
May/June 2015, Invited Paper.

Upgrade existing Build new
infrastructure, | infrastructure, e.g.
asset life transmission lines,

extension, etc. substations, etc.




Distributed energy resources,
reliability and resilience

(a) Normal operation (b) Contingency (c) Emergency
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II)

How about “social” resilience?

* The role of communities can be crucial to lessen the impact of
severe power blackouts.

* Critical period: Insufficient capacity to deal with the event (72
hours)

e Communities are often overlooked in both proactive and
reactive phases of emergency management

* Need for redefining technical vs. social models

Social resilience aspects and pictures are courtesy of and
elaborated from J. Moreno, University of Manchester.

Work performed within the Newton-Picarte UK-Chile project
“Disaster management and resilience in electric power
systems”, 2015-2017




“Disaster management and resilience
in electric power systems”

MANCHESTER

1824
The University of Manchester

Participants:

UNIVERSIDAD
DE CHILE

Funders: = - CDN|CYT EPSRC

.‘ COMISION NACIONAL DE INVESTIGACION
CIENTIFICA Y TECNOLOGICA

Engineering and Physical Sciences
Research Council

* Multi-disciplinary research: Electrical engineering, civil engineering, operations
research, social science and economics
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The 2010 Chile earthquake and tsunami, 8.8 Mw
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“Negative” resilience
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“Positive” resilience

 Community resilience:

“The capacity of communities to cope with and recover positively
from disasters, learning from such stress, activating their inner
resources and performing better in future in the face of adversity”

Workshop on Smart Grid Technologies and Implications for Inclusive Developmentin Sri Lanka




Positive resilience

Cooperation and solidarity
Organisation

Social networks

Alternatives to electricity

Use of natural sources of energy
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An integrated socio-technical assessment:
key findings

* Social aspects may change (dramatically) the technical perspective
* Need for integrating social aspects in technical modelling:

— Repair time after event

— Customer damage function during event, and therefore

— Value of Lost Load

Resilience vs Reliability is not only HILP vs LIHP, but requires a more
fundamental rethinking of the parameters involved in the technical
modelling, besides the modelling itself




New project in South East Asia

TERSE: Techno-economic framework for Resilient and Sustainable
Electrification

USD 1.7M UK-China-Malaysia project, led by the University of
Manchester

Integrating reliability and resilience in planning from a techno-
economic perspective

Integrating impact of distributed energy resources
Integrating social aspects into the technical framework

Collaborations welcome ©




Optimal electrification plan for a whole-country
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E.A. Martinez-Cesena, P. Mancarella and M. Schapfler, Using mobile phone data for electrification planning, Dakar Rural area

D4D Competition, MIT Media Lab, April 2015, Double Award Paper
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Concluding remarks

Low-carbon technologies bring challenges and opportunities

Need for new operational and planning tools to support decisions
of policy makers and regulators to fully address the energy
trilemma and truly value Smart Grid technologies

Need for integrating reliability and resilience in planning from a
techno-economic perspective

Need for integrating social aspects into techno-economic models

Towards development of comprehensive socio-technical
operational and planning frameworks




Workshop on Smart Grid Technologies and Implications for
Inclusive Development in Sri Lanka
3-4 April 2018 * Galle, Sri Lanka

Smart grid methodologies and models to address
affordability, sustainability and
system reliability and resilience

Pierluigi Mancarella
Chair of Electrical Power Systems
The University of Melbourne

pierluigi.mancarella@unimetbredt au



