ASIAN DEVELOPMENT OUTLOOK 2018

HOW TECHNOLOGY AFFECTS JOBS

APRIL 2018

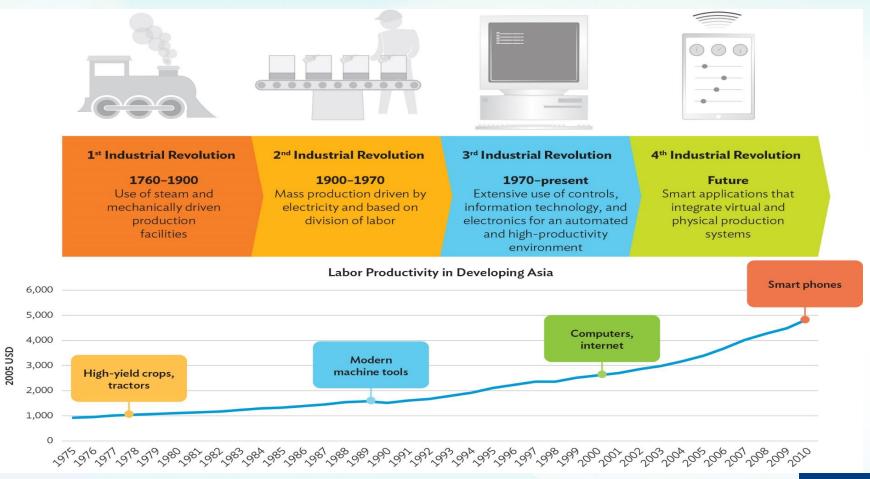
Yasuyuki Sawada

Chief Economist, Asian Development Bank

The views expressed in this presentation are the views of the author/s and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy of the data included in this presentation and accepts no responsibility for any consequence of their use. The countries listed in this presentation do not imply any view on ADB's part as to sovereignty or independent status or necessarily conform to ADB's terminology.

Outline

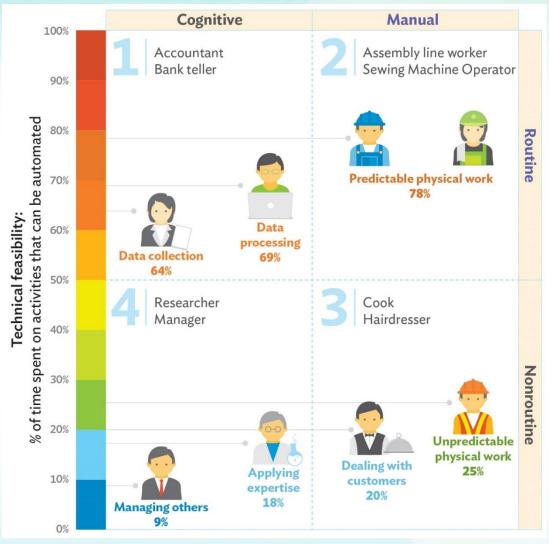
> Rising concern over technology displacing jobs


> Reasons for optimism on job prospects in Asia

> Negative consequences for some workers

➤ What government should do to harness technology for inclusive growth

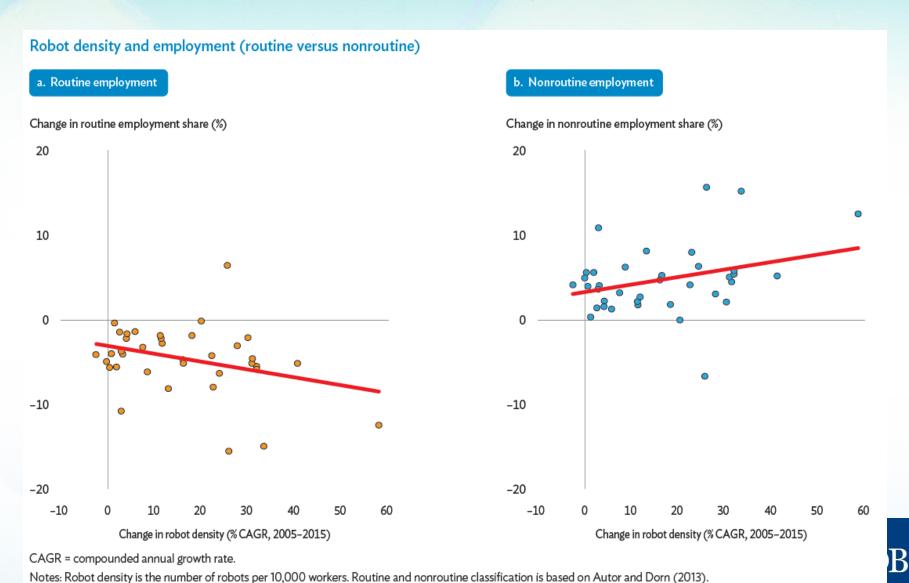
Technological advancement drives higher productivity, the foundation for better-paid jobs and economic growth



There are compelling reasons to remain optimistic about developing Asia's job prospects

- 1. New technologies often automate only some tasks of a job.
- 2. Technical feasibility does not guarantee economic feasibility.
- 3. Rising income and demand.
- 4. New occupations and industries.

New technologies often involve automating specific tasks associated with a job, not the job in its entirety

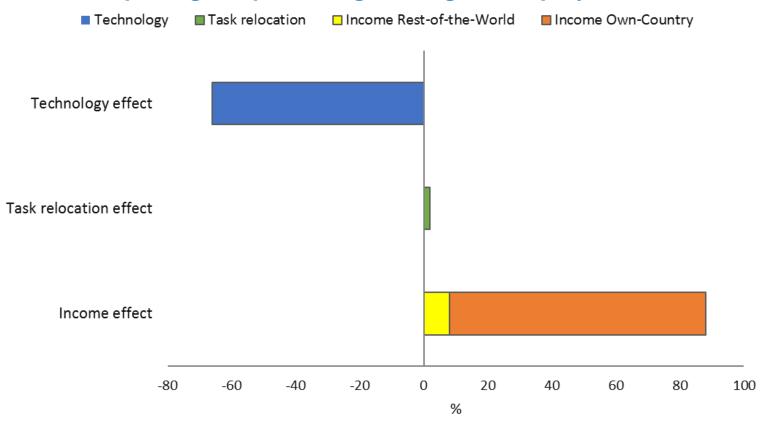


Note: Percentages refer to Frey and Osborne (2017) estimates on probability of automation. Framework is based on Acemoglu and Autor (2011).

Source: Asian Development Outlook 2018: How Technology Affects Jobs.

Where robots are used, it is associated with a reduction in routine employment

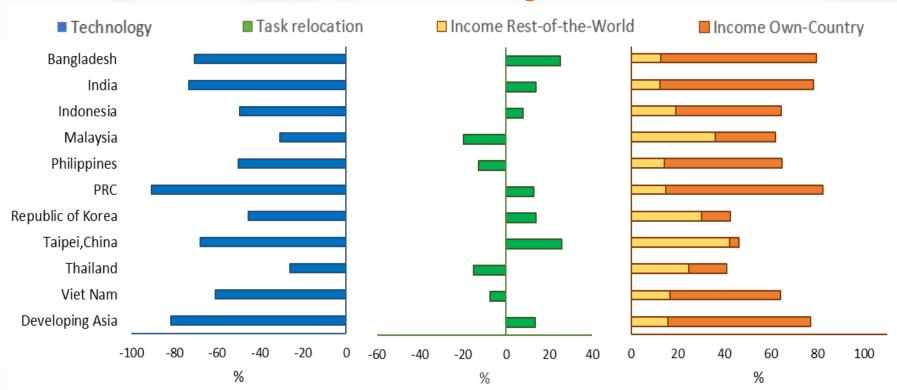
Source: ADB. 2018. Asian Development Outlook: How Technology Affects Jobs. Manila.


Industrial robots are concentrated in capital intensive sectors where employment shares are relatively small

Source: Asian Development Outlook 2018: How Technology Affects Jobs.

Rising demand offsets displacement driven by automation

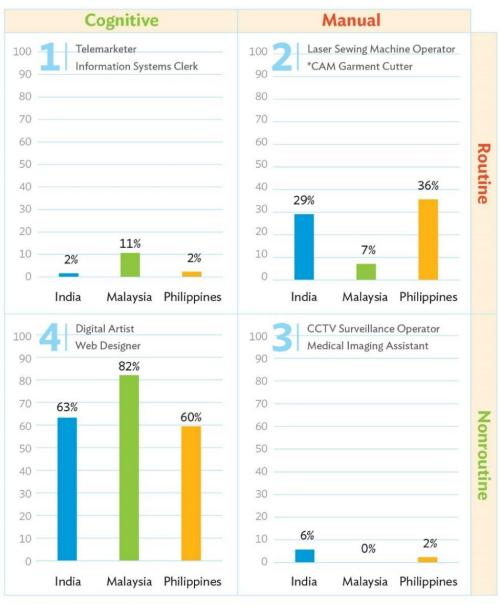
Decomposing the percentage change in employment, 2005-2015



Note: Developing Asia in the decomposition analysis includes Bangladesh, India, Indonesia, Malaysia, Mongolia, the People's Republic of China, the Philippines, the Republic of Korea, Sri Lanka, Taipei, China, Thailand, and Viet Nam. Sources: Decomposition result using ADB Multiregional Input—Output Database (accessed 20 November 2017); Labor force surveys, various countries; World Input—Output Database—Socioeconomic Accounts (Timmer et al. 2015).

This countervailing force is at work across the region

Manufacturing


GVC = global value chain, PRC = People's Republic of China.

Note: Developing Asia in the decomposition analysis includes Bangladesh, India, Indonesia, Malaysia, Mongolia, the People's Republic of China, the Philippines, the Republic of Korea, Sri Lanka, Taipei, China, Thailand, and Viet Nam.

Source: ADB estimates using the ADB Multiregional Input—Output Database (accessed 20 November 2017); Labor force surveys, various countries; World Input—Output Database—Socioeconomic Accounts (Timmer et al. 2015).

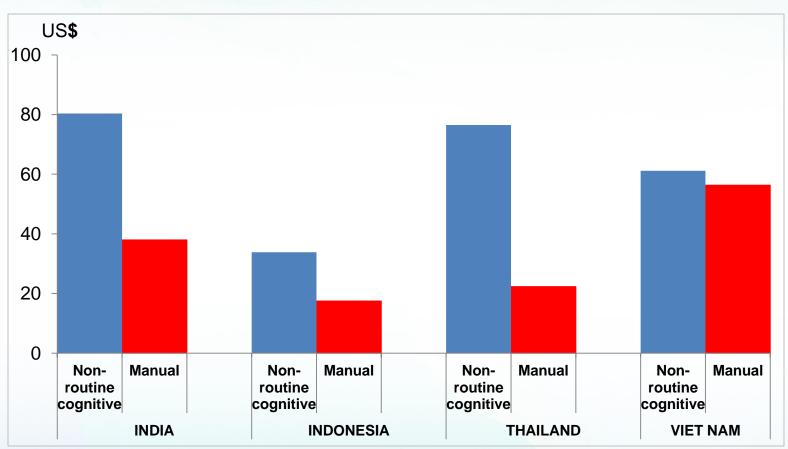
Distribution of New Occupations by Job Type

Technology leads to new occupations...

but these tend to be in non-routine cognitive category

	Total No. of Job Titles (latest year)	No. of New Job Titles	Share of New Job Titles
India	3,600	120	3.33%
Malaysia	2,338	28	1.20%
Philippines	3,698	42	1.14%

Notes: The figures are based on a comparison of National Classification of Occupations (NCO) for each country. Job titles presented in the 4 quadrants are actual new titles.


Source: Asian Development Outlook 2018: How Technology Affects Jobs

^{*} Computer Aided Manufacturing

Wages have also grown more for these workers, leaving low-skill workers behind

Change in average monthly wages, constant prices (in US\$)

Note: The time frames vary across countries, with Viet Nam the shortest (2007–2015), followed by Thailand (2000–2010), India (2000–2012), and Indonesia (2000–2014). Developing Asia refers to the five countries included in this analysis. Source: *Asian Development Outlook 2018:* How Technology Affects Jobs

Government has an important role to play in leveraging technological advances for inclusive growth

The new industrial revolution and the role of government

- Education and training
- Favorable labor regulation
- Social protection
- Tax policies
- Facilitate skills development and job-matching
- Provision of public goods and services
- Investments in ICT infrastructure
 - Antitrust and consumer protection
 - · Innovation and technology adoption

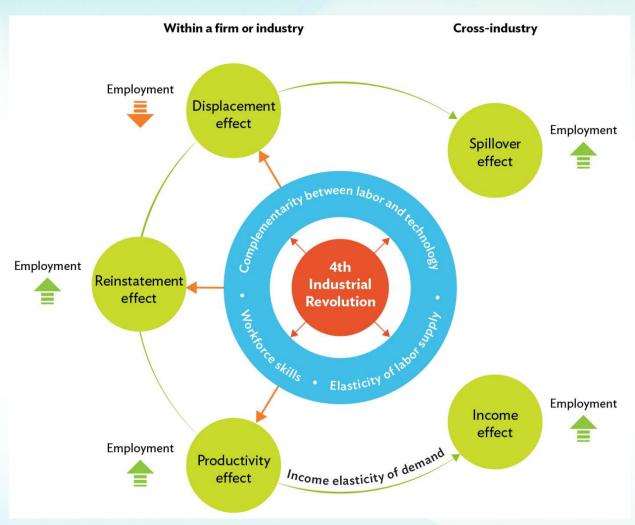
Key messages

- New technologies drive higher productivity, the foundation for better-paid jobs and economic growth.
- Despite concern about technology induced job losses, there is good reason to be optimistic about Asia's job prospects
- New technologies will alter skills requirements and may cause unemployment as some firms downsize or close.
- Government has an important role to play in leveraging technological advances for inclusive growth

Appendix

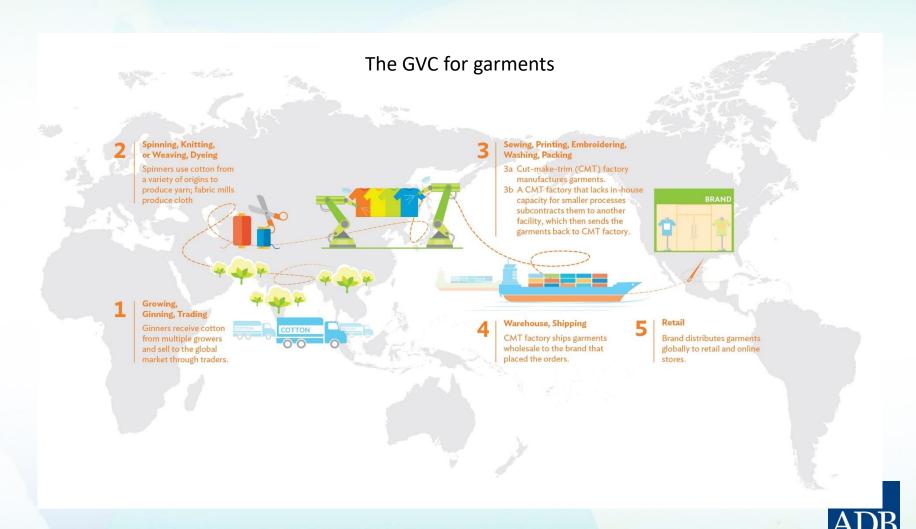
Empirical analyses corroborate these descriptive trends

2.2.1 Change in robot inputs and impact on employment, 2005-2015 (OLS estimates)


a. Overall employn	nent				b. Routine employment			
		Chang	ge in employm	nent		Change in routine employment share		
		(1)	(2)	(3)		(1)	(2)	(3)
Robot adoption		0.212 0.37)	-0.212 (0.73)	-0.663 (0.61)	Robot adoption	-0.048*** (0.01)	-0.048*** (0.01)	-0.048*** (0.01)
Country trends		Yes	Yes	Yes	Country trends	Yes	Yes	Yes
Controls				Yes	Controls			Yes
Clustered standard errors	ł		Yes	Yes	Clustered standard errors		Yes	Yes
Observations		758	758	757	Observations	777	777	776
c. Occupational en	nployment	shares			d. Developed versus dev	eloping count	ries	
Change in employment share of					Change in routine employment share			
	(1)	(2)	(3)	(4)		(1)	(2)	(3)
	Routine manual	Routine cognitive	Nonroutine manual	Nonroutine cognitive	Robot adoption	-0.056*** (0.01)	-0.056*** (0.02)	-0.056*** (0.02)
Robot adoption	-0.055*** (0.02)	-0.002 (0.00)	-0.004 (0.01)	0.061*** (0.01)	Developing country x robot adoption	0.038 (0.03)	0.038** (0.02)	0.036** (0.02)
Country trends	Yes	Yes	Yes	Yes	(Interaction term)			
Controls	Yes	Yes	Yes	Yes	Country trends	Yes	Yes	Yes
Clustered	Yes	Yes	Yes	Yes	Controls			Yes
standard errors Observations	776	776	776	776	Clustered standard errors		Yes	Yes
0 0001 74410115	,,,	,,,	, , 0	770	Observations	777	777	776

^{* =} p<0.1, ** = p<0.05, *** = p<0.01, OLS = ordinary least squares.

Note: Robot adoption is the percentile in the weighted distribution of changes in robot density. Controls include real changes in gross fixed capital formation share in value added and changes in value added. Robust standard errors in parenthesis. Regressions are weighted by 2005 within-country employment shares.


There are different channels at play that determine employment outcomes


Notes: Arrows indicating a rise or fall in employment or wages reflect empirical findings from existing student they do not necessarily mean the result is obtained each time the effects are studied.

Source: ADB. 2018. Asian Development Outlook: How Technology Affects Jobs. Manila.

Technology and employment in global value chains

Decomposition of labor demand shows that employment increase from rising incomes overshadow reduction from technology

Structural decomposition of change in employment

$$\begin{aligned} x_{i1} - x_{i0} \\ u_k' \hat{\pi}_1^{-1} R_{i1} \hat{l}_{i1}^* [T_1^* \circ (S_1^* \cdot \hat{c}_1)] u \\ - u_k' \hat{\pi}_0^{-1} R_{i0} \hat{l}_{i0}^* [T_0^* \circ (S_0^* \cdot \hat{c}_0)] u \end{aligned}$$

change in employment

$$\frac{1}{2} \{ u_k' \hat{\pi}_0^{-1} R_{i0} \langle \hat{l}_{i1}^* - \hat{l}_{i0}^* \rangle [T_1^* \circ (S_1^* \cdot \hat{c}_1)] u + u_k' \hat{\pi}_1^{-1} R_{i1} \langle \hat{l}_{i1}^* - \hat{l}_{i0}^* \rangle [T_0^* \circ (S_0^* \cdot \hat{c}_0)] u \}$$

technology within GVC

$$\begin{split} &\frac{1}{2}\{u_{k}'\hat{\pi}_{0}^{-1}\langle R_{i1}-R_{i0}\rangle\hat{l}_{i1}^{*}[T_{1}^{*}\circ(S_{1}^{*}\cdot\hat{c}_{1})]u+u_{k}'\hat{\pi}_{1}^{-1}\langle R_{i1}-R_{i0}\rangle\hat{l}_{i0}^{*}[T_{0}^{*}\circ(S_{0}^{*}\cdot\hat{c}_{0})]u\}\\ &+\frac{1}{2}\{u_{k}'\hat{\pi}_{0}^{-1}R_{i0}\hat{l}_{i0}^{*}[\langle T_{1}^{*}-T_{0}^{*}\rangle\circ(S_{1}^{*}\cdot\hat{c}_{1})]u+\frac{1}{2}\{u_{k}'\hat{\pi}_{1}^{-1}R_{i1}\hat{l}_{i1}^{*}[\langle T_{1}^{*}-T_{0}^{*}\rangle\circ(S_{0}^{*}\cdot\hat{c}_{0})]u\} \end{split}$$

task relocation

$$\frac{1}{2} \{ u_k' \langle \hat{\pi}_1^{-1} - \hat{\pi}_0^{-1} \rangle R_{i1} \hat{l}_{i1}^* [T_1^* \circ (S_1^* \cdot \hat{c}_1)] u + u_k' \langle \hat{\pi}_1^{-1} - \hat{\pi}_0^{-1} \rangle R_{i0} \hat{l}_{i0}^* [T_0^* \circ (S_0^* \cdot \hat{c}_0)] u \}$$

country-level efficiency

$$\frac{1}{2} \{ u_k' \hat{\pi}_0^{-1} R_{i0} \hat{l}_{i0}^* [T_0^* \circ ((S_1^* - S_0^*) \cdot \hat{c}_1)] u + u_k' \hat{\pi}_1^{-1} R_{i1} \hat{l}_{i1}^* [T_1^* \circ ((S_1^* - S_0^*) \cdot \hat{c}_0)] u \}$$

between GVC

$$\frac{1}{2}\left\{u_{k}'\hat{\pi}_{0}^{-1}R_{i0}\hat{l}_{i0}^{*}\left[T_{0}^{*}\circ(S_{0}^{*}\cdot\langle\hat{c}_{1}-\hat{c}_{0}\rangle)\right]u+u_{k}'\hat{\pi}_{1}^{-1}R_{i1}\hat{l}_{i1}^{*}\left[T_{1}^{*}\circ(S_{0}^{*}\cdot\langle\hat{c}_{1}-\hat{c}_{0}\rangle)\right]u\right\}$$

income