ADB supported project

Climate-smart practices and varieties for intensive ricebased systems in Bangladesh and Cambodia

Arvind Kumar, Nitika Sandhu, Alice Laborte, Sudhir Yadav, Virender Kumar, Georgina Vergara, Rafiqul Islam, Humnath Bhandari, Ansar Ali, Ouk Makara

International Rice Research Institute Bangladesh Rice Research Institute Cambodian Agricultural Research and Development Institute

Knowledge Intensive Agriculture Workshop ADB, Manila, June 15-16, 2017

The views expressed in this presentation are the views of the author/s and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy of the data included in this presentation and accepts no responsibility for any consequence of their use. The countries listed in this presentation do not imply any view on ADB's part as to sovereignty or independent status or necessarily conform to ADB's terminology.

Activities

- Identify constraints for adoption of climate smart water saving mechanized technologies.
- Identify policy, institutional support and logistics need to scale up high level climate smart- water saving mechanized technologies.
- Conduct 6 field demonstrations for one-year crop cycles at two sites in Bangladesh (AWD) and 4 field demonstrations at two sites in Cambodia (mechanized DSR) and organize training, visits of progressive farmers, government officials, and representatives from NGOs and the private sector.
- Multiply 13.5 ton quality seed of rice and other crops and distribute to 8500 farmers
- Demonstrate the benefits of water-labor-energy savings, reduction in GHG, and increase in yield, farmers' income, and system productivity in Bangladesh and Cambodia.

Dissemination of AWD varieties and management practices in Muhuri irrigation project, Chittagong, Bangladesh: ADB supported project

Activities	Accomplishments
Dissemination of AWD water saving rice	Farmers: 508, Area: 125 ha, Region: 8
technology, associated management practices,	villages of 6 upazilas in two 2 districts
rice varieties suited to AWD	(Feni, Chittagong)
Training to extension workers as well as farmers	Number : 9; Participants: DAE field stuff,
on AWD and associated management practices	NGO workers, 508 farmers
On-farm water saving and reduced GHG emission	Completed
under AWD as compared to flooded cultivation	

Yield and water saving achieved in Muhuri project area

Trait	Treatments	Locations					
		Nurpur	Valukia	Korerhat	Pathangor	Dakkin Adhar manik	Mean
GY (t/ha)	AWD	6.4	6.6	5.4	6.7	5.5	6.1
	Conventional	6.7	6.4	5.2	6.3	5.5	6.0
	LSD (0.05)						0.3
Maturity (days)	AWD	134	135	138	136	136	136
	Conventional	139	138	139	140	141	139
	LSD (0.05)						2.15
Number of panicles	AWD	263	324	317	228	325	291
per square meter	Conventional	235	300	269	383	284	294
	LSD (0.05)						10.62
Number of filled	AWD	117	105	118	129	100	114
grains/panicle	Conventional	116	104	126	122	114	116
	LSD (0.05)						9.33
% Sterility	AWD	22.18	13.72	19.21	13.49	22.79	18.28
	Conventional	16.39	12.57	10.43	10.71	14.84	12.98
	LSD (0.05)						4.06
Number of required	AWD	6	7	8	7	8	7
irrigation	Conventional	8	10	10	9	10	10
1 million	LSD (0.05)						0.56

GHG,GWP under AWD, flooded irrigation: BRRI

Water	GHG (kg ha ⁻¹)			
management	CH ₄	CO ₂	N ₂ O	GWP
AWD	148b	543a	1.1a	4585b
Continuous	247a	570a	1.1a	70821a
flooding				

letters in a column represent the comparison of means at 5% level of significance by LSD

GHG measurement, BRRI

AWD crop at farmers site

Water saving varieties released

Name	Designation	Country, release year	
CRdhan 40	IR55423-01	India 2012, Aerobic	
CR Dhan 201	IR 83380-B-B-124-1	India 2013, Aerobic	
CR dhan 202	IR 84899-B-154	Indian 2013, Aerobic	
CR dhan 203	IR 84899-B-185	India 2013, Aerobic	
CR dhan 204	IR 83927-B-B-279	India 2013, Aerobic	
CR dhan 205	IR 86931-B-578	India 2014, Aerobic	
Kathian 2	IR 82635-B-B-47-2	Philippines 2014, Aerobic	
Sabour Ardhjal	IR 87638-10-1-1-3	India, 2016, Aerobic	
Kathian 3	IR 86857-101-2-1-3	Philippines 2014, Aerobic	
CAR 14	IR80463-B-39-3	Cambodia, 2015, Aerobic	
Rajendra Neelam	IR 80312-6-B-3-2-B	India, Bihar, 2017, Aerobic	

Accomplishments

 Discussion on project activities with CARDI, Cambodia and BRRI, Bangladesh

Cambodia:

Site Selection: Kampong Thom (10 ha) and Takeo Province (10 ha) Variety Selection: Phka Rumduol and CAR14 Crops after rice: Mungbean, watermelon, bitter gourd, cassava, vegetables Participation of farmers: Confirmed Seed multiplication, distribution: Planned

Bangladesh

Site Selection: Nurpur (10 ha) and Korerhat Village (10 ha) in Muhuri Project area sites. Variety Selection: BRRI dhan 71 and BRRI dhan 75 Crops after rice: Mustard, vegetables Participation of farmers: Confirmed Seed multiplication, distribution: Planned

Challenges for adoption of AWD

 Field to field irrigation Upstream 1 Who are decision makers Staggered demand within small Visible Dela ydrological unit Laborious and time **Downstream**

IRRI

consuming • Knowledge intensive Rice science for a better world

Potential CS water-saving technologies

• Improved rice varieties

- High yield, short-duration, abiotic stress tolerant, water efficient, aerobic rice, and demand-driven
- Diversification of rice-based cropping system
 - Improved rice varieties and non-rice crops, crop management
- Conservation agriculture
 - Minimum tillage, compost and mulching,
- Mechanized crop planting
 - DSR, machine sowing, harvesting of crops
- Smart irrigation system
 - AWD, irrigation scheduling, volumetric pricing, solar pumping, smart prepaid card system, efficient infrastructure, community-based irrigation

Rice science for a better world

Constraints in adoption of CSA technologies

Biophysical	 Landscape Soil and water Climatic risk
Production system	Limited access to technologies (crop, variety, machine, irrig., input)Limited information, knowledge, and skills on CSA
Economic	 Low additional benefit (yield, income, livelihood) Higher investment cost (inputs, weeds) Limited capital, incentives, and infrastructure.
Sociocultural	 Food self-sufficiency is a first priority Traditional practices (community, labor, gender, norms and values) Human behavior (resist change, risk-averse, women participation)
Enabling environment	 Limited access to credit and market Weak institution (extension, information, credit, land tenure) Poor governance (policy, rule and regulation, support, coordination)
Riv	ce science for a better world

IRRI

Needed policies and institutions for scaling: Dialogue, suggestions

- Investment to develop, validate, and disseminate appropriate CSA technologies
- Smart extension that improves farmers' access to information, technology, and knowledge
- Train farmers to sensitize, make them aware and enhance capacity (knowledge and skills) on CSA technologies
- Provide support and incentives to farmers for adoption of CSA technologies
- Facilitate access to credit and market
- Promote agricultural service provision and insurance
- Develop infrastructure (e.g., irrigation and communication)
- Promote public-private partnership for technology dissemination
- Mainstream CSA in national development programs

Rice science for a better world

Needed logistics for scaling out: Bangladesh, Cambodia

- Review of government policies and priorities and align activities
- Propose methods to scale-out technologies and services through public-private partnership
- Conduct survey and generate evidence on adoption and impact
- Assess current practices, mechanization status, and service provision for machines and agricultural insurance

Needed logistics for scaling out

- Examine current business models on agricultural service provisions and recommend viable business models: Bangladesh, Cambodia
- Sensitize policymakers and get policy support through policy dialogues and visits in research sites: Bangladesh, Cambodia
- Identify needs for policy and institutional support for strong farmer-market linkages: Bangladesh, Cambodia
- Raise profile of CSA by communicating successes to wider audiences: Bangladesh, Cambodia
- Establish knowledge sharing platform: Bangladesh, Cambodia

Quality seed multiplication and distribution

- Quality seed multiplication of improved rice Varieties – 8 tons (for wet and dry seasons) in Bangladesh, 5 tons in Cambodia
- Seed multiplication of 0.5 ton in mustard in Bangladesh and 0.5 ton Mungbean in Cambodia
- Distribution of quality seed to 5500 farmers in Bangladesh and 3000 in Cambodia
- Training farmers on quality seed production

ASTV, Cambodia

Training farmers, extension workers, NGOs

- Train 300 farmers on adoption of mechanized AWD in Bangladesh
- Demonstrate to farmers the benefits of AWD on water- labor saving and GHG reduction
- Train 300 farmers in Cambodia on mechanized DSR adoption
- Demonstrate to farmers the benefits of DSR for labor-water saving and GHG reduction

IRRI thank ADB for continuous support for research on water saving rice varieties and technologies

- Development and Dissemination of Water-Saving Rice Technologies in South Asia: 2006-2011- Jengfeng Zhang
- Development and dissemination of climate-resilient rice varieties for watershort areas of South Asia and Southeast Asia: 2014-2016- Michiko Katagami
- Dissemination of AWD varieties and management practices in Muhuri irrigation scheme, Chittagong, Bangladesh: 06 months- Nov 16-May 17-Michiko Katagami
- Climate-smart practices and varieties for intensive rice-based systems in Bangladesh and Cambodia: 2017 onwards- Abul Basher

70

Thanks to all of you for your kind attention

Rice science for a better world

