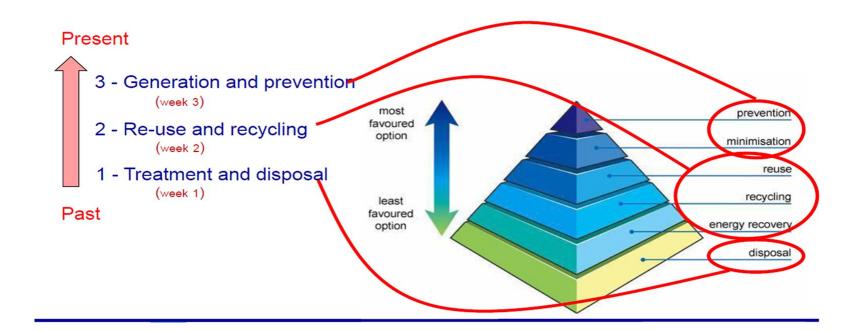
The views expressed in this presentation are the views of the author/s and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy of the data included in this presentation and accepts no responsibility for any consequence of their use. The countries listed in this presentation do not imply any view on ADB's part as to sovereignty or independent status or necessarily conform to ADB's terminology.

A Course Review
By
Vivian Castro-Wooldridge &
Lu Shen
UNESCO-IHE

Integrated Solid Waste Management


- Course Overview
- Lecture Series
- Exercises
- Excursions
- Group Exercise

Course Overview

2 Logical course build-up

Historical logic or logic of the waste hierarchy

Course Overview

Module11 - Short course on Solid Waste Management 2016

	1 Treatment & disposal			2 Re-use & recycling			3 Generation	& prevention		
	Group 1	Group 2		Group 1	Group 2	2	Group 1	Group 2		
Mon	June	27	Mon	July	4	Mon	July	11		
1	Regis	tration	1	Exc. Recycling Center	Groupw ork	1	Abores Menning	Abores Denning		
2	Siebel - Introduction	Course & Groupwork	2	TUB(Rotter) - Waste to energy & incineration			Abarca - Planning	Abarca - Planning		
3	Siebel - Stakeholders	TUB(Larsen) - Collection	3	TUB(Rotter) - WM a	and climate change	3	Abarca - Planning	Abarca - Planning		
4	TUB(Larsen) - Collection	Siebel - Stakeholders	4	Groupw ork	Groupw ork	4	Abarca - Flaming	Abarca - Flamming		
Tue	June	28	Tue	July	5	Tue	July	12		
1			1	TUB(Larse	n) - Biogas	1	Siebel - Was	te Prevention		
2	Siebel - Getting the	group work started	2	TUB(Larsen) - Waste	to energy Calculations	2				
3	Siebel - Presentati	ons by participants	3	Presentations I	by participants	3		anova -		
4	Groupw ork	Groupw ork	4	TUB(Larsen) - Tutoring calculations	TUB(Rotter) - Tutoring calculations	4	Financial aspects 1			
Wed	June	29	Wed	July	6	Wed	July	13		
1	TUB(Larsen) - Intro calculations waste generation		1	Excursion Antwerp			Velkushanova -			
2			2				Financial	aspects 2		
3	Group	ow ork	3	Igean & Hooge Maey			TUB(Fritze) - Groupw ork Q&A			
4			4			4	Groupw ork	Groupw ork		
Thu	June	30	Thu	July	7	Thu	July	14		
1	TUB(Larsen) - La	andfill technology	1	Groupw ork	Exc. Recycling Center	1	TUB (Fritze) - G	roupw ork Q&A		
2			2	TUB (Fritze) - Groupw ork Q&A			Groupw ork	Groupw ork		
3	TUB(Heiming) - La	andfill Calculations	3	Rotter - Groupw ork presentations		3	Groupw ork Groupw ork			
4	rob(roming) - Landin Calculations		4	Groupw ork			Groupw ork			
Fri	July 1		Fri	July	8	Fri	July 15			
1	TUB(Larsen) - MBT and composting		1	reb(retter) introduction to Lectionics of		1	Groupw ork Final presentations			
2				Waste Management and Recycling			Rotter & Siebel			
3	TUB(Heiming) - Calculati	ons MBT and composting	3	TUB(Rotter) - Material Recycling			How to continue? B	uilding up a network		
4	Groupw ork Groupw ork									

Lecture Series

Origins of Waste

- Generation
- Characterization
- Collection

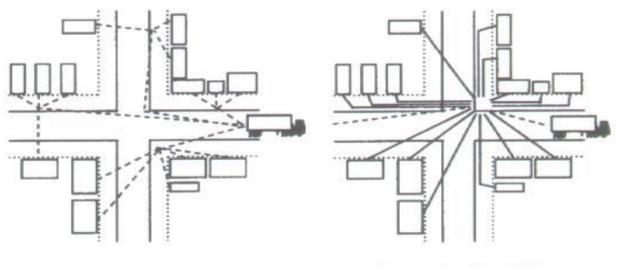
Treatment and Disposal

- Sanitary Landfill
- MBT
- Composting
- Incineration

Reuse, Reduce, Recycle

Financing

Examples of Lectures

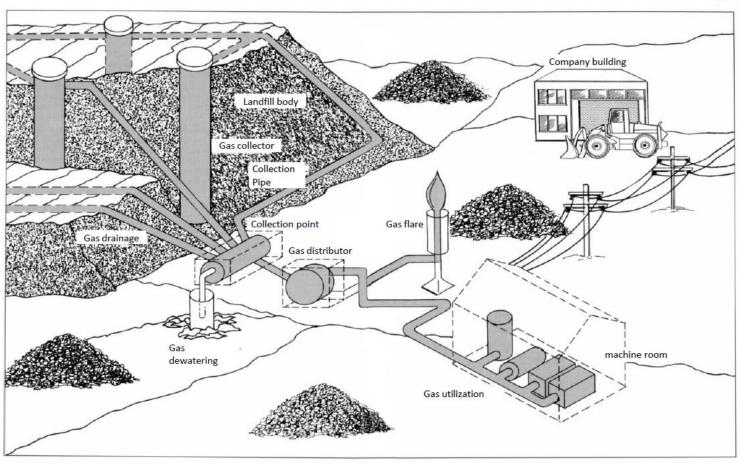

Hol- und Bringsysteme

Holsystem

Abfälle werden direkt beim Abfallerzeuger abgeholt

Bringsystem

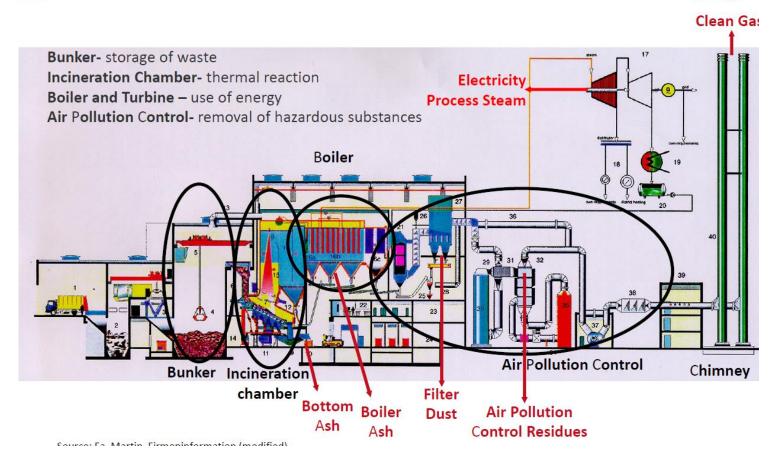
Abfälle werden vom Abfallerzeuger an den dafür vorgesehenen Rücknahmeort gebracht


--- Weg der öffentlichen Abfuhr

____ Weg der Anlieferer

Examples of Lectures

Design of a Landfill Gas Management System



Examples of Lectures

Exercises

Aim of step b) modelling of the landfill geometry

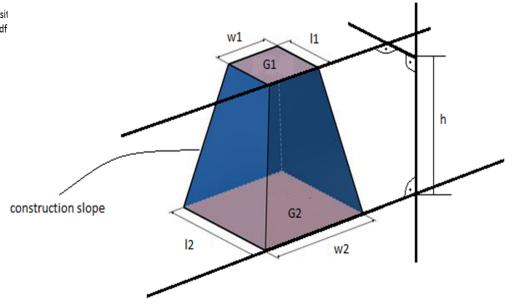
In order to design the leachate collection system in step c), we need to caculate the base area of the landfill body G_2 at first. Therefore we have to choose an appropriate landfill geometry and fit it's parameters to the total volume of waste to be landfilled

during the operational time and to the site conditions. In our example, the landfil width w_1 shall be given du to the sit will thus fit the geometry of the landfill body to the total volume of waste to be landfilled by variation of the free landf

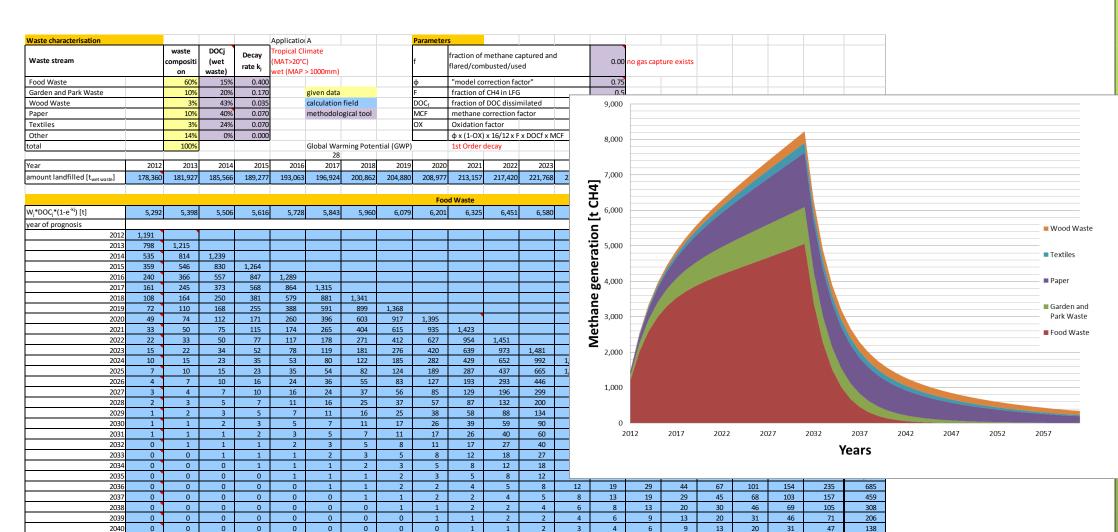
1. Choose an appropriate landfill geometry

The landfill body will be approximated as a straight truncated pyramid with rectangular base G_2 (see figure). It's volume is given by $V_calc=h/3\cdot(G_1+G_2+\sqrt{(G_1\cdot G_2)})$, where $G_1=l_1\cdot w$ 1; $G_2=l_2\cdot w$ 2; $l_2=l_1+2\cdot h\cdot slope$; $w_2=w_1+2\cdot h\cdot slope$.

2. Collect Given data from previous calculations and site conditions:


 $V_waste=total\ volume\ of\ waste\ to\ be\ landfilled\ during\ operational\ time\ h=25m\ w_1=300\ m$ construction slope: w/h=3m/1m

3. Calculate the base area G 2


Since the formula $V_calc=h/3\cdot(G_1+G_2+V(G_1\cdot G_2))$ cannot be solved analytically for G_2 , we will calculate G_2 iteratively using Excel's "Goal Seek" function. For doing so, please follow these steps:

- 1. Type the formulas given above, or, if applicable, the given data into the respective green cells B17-B22
- 2. Type V_waste V_calc into cell # B24
- 3. Place a link to cell # B13 into the orange cell # B23
- 4. Click register "Data" -> "What-if-analysis" -> "Goal Seek" function. A dialog box appears. Please link the text field input "Set Cell" to cell # B24 and type "0" into the text field input "To value". Link the text field input "By changing cell" to the yellow cell # B16. Then click "ok".

Excel will now automatically vary the free l_1 value in cell # B16 and calculate V_calc out of the depending variables until $V_waste-V_calc$ in cell # B24 equals zero and thus V_calc= V_waste is true. Now the geometry has been fitted to the total waste volume to be landfilled and the G2 value in cell # B21 is the respective base area of the landfill body.

Exercises

Excursions

Excursions

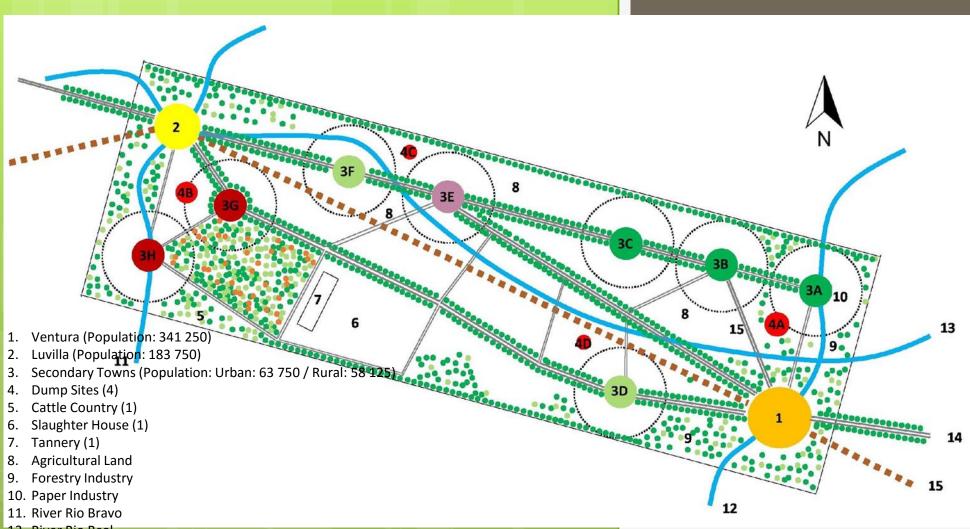
Excursions

Group Exercise

Solid Waste Management

DESCRIPTIONS OF THE REGIONS

Group work 2016


Small Island state Vanaestia	Coastal region Atlantua		Province of a mountain state Montagia	Flat land area Deseavantiga
9 Islands, 260-800 km², 35- 1250 km apart, nearest islands 1500 km, moderately mountainous, volcanic origin; monsoon winds	126 km coastal land 15-75 km wide, beach/rocks, city A: 65,000, B 15,000 inh, 2 oblong, fertile islands parallel to coast (±8km), 30,000 inh.	Geography	3,500 km², 10% arible, mountains 750 – 3500 m high, one large river crosses country, one border crossing	5,000 km² ondulating, partly fertile land, crossed by 3 major rivers, 15-150 masl, 4 seasons, temps -5-25, humidity 55%,
avg precipitation: 750 mm/a; humidity 65%; temp.21-28°C; floodings annually recurring; hurricane prone region in summer period	predominantly offshore wind, precipation 450 mm/a (3 months), temp 25±4°C; avg. humidity 25%, sunshine 3800 hrs/a,	Meteorology	Mountain winds, precipitation @ 600 mm/a (with up to 300 mm/24 hrs), sunshine 1900 hrs/a;	Avg precipitation 750 mm/a, humidity 55%, sunshine 2500 hrs/a, strong southens winds not uncommon
avg. 75/km², 55% along 15 km coastal zone; BANP\$/C¹) 1550; Ed: 5%Uny, 25%Sec,65% Prim	Total population: 280,000; BANP\$/C¹) 9550; Ed: 15%Uny, 45%Sec, 30%Prim	Population	650,000 inh, 54% in 2 cities, BANP\$/C¹) 1500, Ed: 7.5%Uny, 45%Sec, 35%Prim	Population 1.5 million, 35% in 2 cities 100 km apart, BANP\$/C¹) 6500, Ed: 12.5%Uny, 55%Sec, 30%Prim
small trades: fishing, agriculture, cattle, tourism, wood, leather, horticulture	Tourism income , 1.2 million tourist nights in 3 months; wood industry & agriculture #2 & 3, fishing #4	Economy	Forestry, energy, tourism (5.5 million tourist nights/yr),	Agriculture, cattle breeding, meat industry, tourism, forestry, leather industry, transportation,
1) Bruto Annual National Product in	US\$/Cap (BANP\$/C)			

DESEAVANTIGA
INTEGRATED SOLID
WASTE
MANAGEMENT
PLAN
2016 - 2031

Fernando Bião Lima Vivian Castro-Wooldridge Neelam Pradhananga Lu Shen

1. The Context

DESEAVANTIGA REGIONAL MAP

Geographic Data

Area of 5,000 m^{2,} undulating, partly fertile, 3 major rivers, 15-150 mean ASL, 4 seasons, Temps -5 to 25 degrees C, humidity 55%

Climatic Data

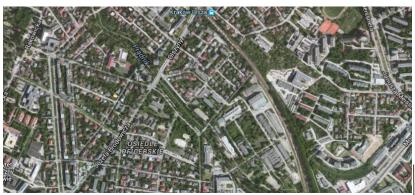
Average precipitation 750 mm/year, humidity 55%, sunshine 2500 hrs/annum, strong southern winds not uncommon

Demographic Data

Pop. 1.5 million, 35% in 2 cities 100 km apart, BANP\$/C 6500, Education: 12.5% university, 55% secondary and 33% primary

Economic Data

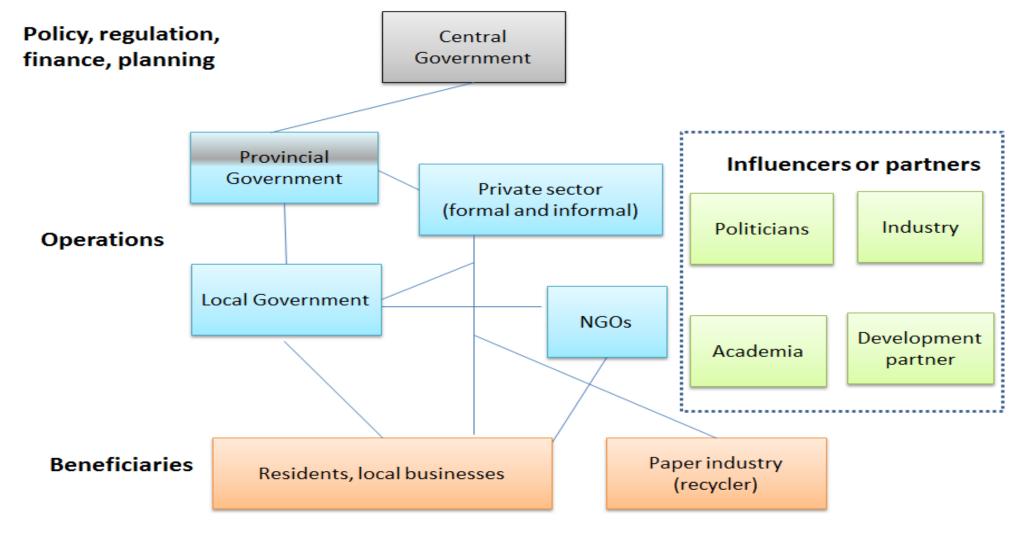
Agriculture, cattle breeding, meat industry, tourism, forestry, leather industry, transportation


12. River Rio Real

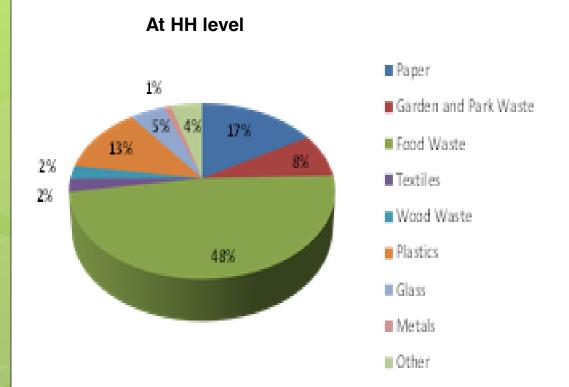
- 13. River d'Oro
- 14. Highways
- 15. Railway
- 16. Roads

CURRENT WASTE MANAGEMENT SYSTEMS IN THE REGION

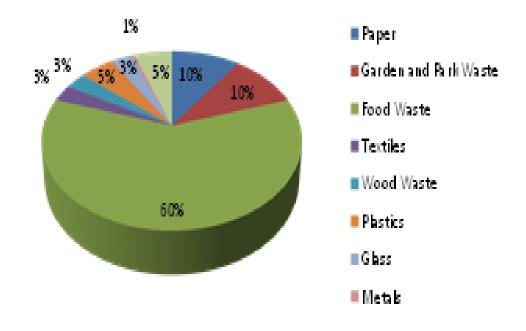
VENTURA LUVILA 8 SECONDARY TOWNS



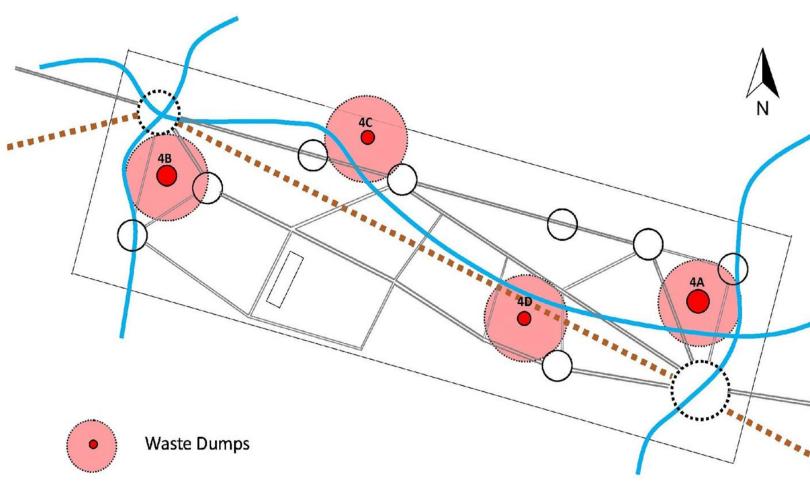
- Local government provides collection services
- Service is unreliable
- Collection coverage 70%
- Door-to-door collection 2x/ week
- Composting is insignificant
- Open dumpsites used
- Large dump site near Ventura and Luvila
- Informal waste workers recover some resources from HHs
- Some illegal dumping in rivers


- Local government provides collection services
- Service is unreliable
- Collection coverage 70% (urban)
- Collection coverage 30% (rural)
- Door-to-door collection- 2x week (urban)
- Collection (rural) common collection points
- Composting Low (urban), High (rural)
- Informal waste workers recover some resources from HHs
- 2 medium sized dumpsites nearby
- Open dumpsites used
- Some illegal dumping in rivers

Blue text = key differences between large & small towns


STAKEHOLDER ANALYSIS

WASTE GENERATION


From HHs after informal collection

Informal waste pickers:

collect 20% of total mass recycle 47% of recyclable materials

MAIN ISSUES IN WASTE MANAGEMENT

Key Issues

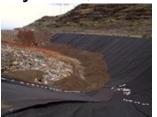
- 4 dumpsites
- Groundwater pollution
- Widespread littering
- High use of plastic bags
- Informal waste workers
- Unreliable collection
- Inadequate tariffs
- Tannery & slaughterhouse waste

Institutional Framework

- Lack of clarity on stakeholders roles/ responsibilities
- Rudimentary Act and regulations exist; they do not cover hazardous waste
- Regulation is weak with little to no enforcement

Drivers for Change

- Tourism industry
- Demands by the general public

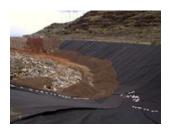

2. The Future

A GREEN DESEAVANTIGA: A VISION FOR SWM

INSTITUTIONAL	POLICY	REGULATORY	FINANCE	SOCIO-CULTURAL
Create a strong and robust institutional framework to guide regional system	Improve policies and industrial waste management	Improve the regulatory mechanism to ensure laws and policies are complied with	Ensure tariffs are affordable and set at cost recovery levels	Ensure citizens are aware of their important role and options to reduce waste
Build capacity of the new regional utility; absorb current municipal staff		Enact and enforce laws on littering, use of plastic bags, open burning		Eliminate widespread littering and open burning
Operationalize data management system for M&E, decision-making				Acknowledge and support informal waste workers

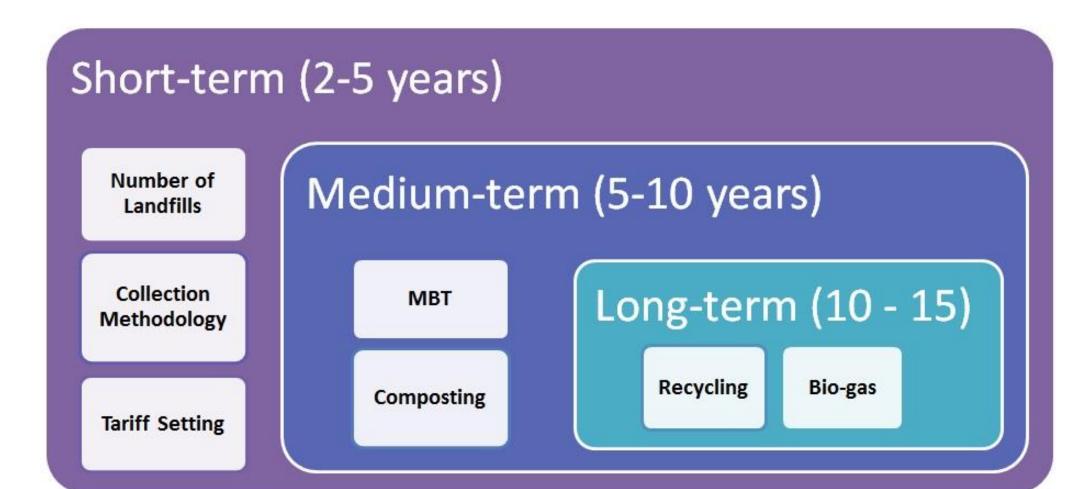
SUSTAINABILITY CRITERIA ANALYSIS

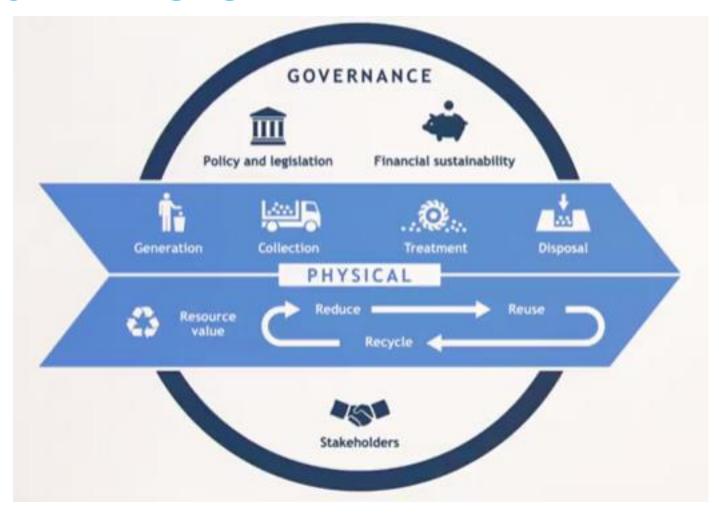
Scenario 1 - Basecase dumpsite remediation, improved collection system, landfill, transfer station



Scenario 2 - Basecase + MBT

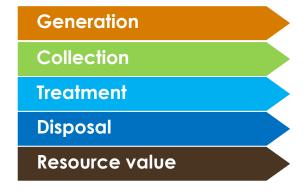
Scenario 3 - Basecase + MBT + Biogas plant




Scorecard

	Scenario 1	Scenario 2	Scenario 3
Financial			
CAPEX	3	2	1
OPEX	3	2	1
Environmental			
Greenhouse gas emissions	1	2	3
Landfill life expectancy	1	2	3
Social and institutional			
Affordability	3	2	1
Acceptability	3	3	3
Capacity	3	2	1
Score	17	15	13

STRATEGIC PLAN


STRATEGIC PLAN

9 targets in 3 time scales according to cost and market demands:

- Short term (0-5 years);
- Medium term (5-10 years);
- Long term (10-15 years).

Each target related with one of the physical elements of SWM system:

Deseavantiga Secretary of Environment will monitor

Generation Collection

Target #1

Reduce waste generation

Short: 1% reduction per year

Medium: 1% reduction per year

Target #2

Increase waste collection coverage

Short: 85% (urban); 50% (rural)

Medium: 95% (urban); 70% (rural)

Long: 95% (urban); 80% (rural)

Target #3

Improve reliability of waste collection services

Short: 99% of reliability

Target #4

Improve treatment of industrial waste generated by the tanneries and slaughterhouses

Short: The water treatment of the tanneries and slaughterhouses follows the regulation standards

Medium: At least 50% of organic waste from the tanneries and slaughterhouses composted or digested in biogas plants

Long: 100% of organic waste from the tanneries and slaughterhouses composted or digested in biogas plants

Target #5

Encourage household waste segregation to ensure clean waste flows

Short: 2-flow system effective for 10% of HHs

Medium: 2-flow system effective for 30% of HHs

Long: 2-flow system effective for 50% of HHs

Generation

Treatment

Target #6

Establish and construct infrastructure for waste treatment

Short: Construct a controlled final disposal site for the waste

Remediate existing dumpsites

Medium: Construct a facility to sort collected waste and reduce its volume before sending to final disposal

Long: Construct a plant to treat organic waste and its emissions

Target #7

Limit greenhouse gas emissions

Short: Reduce CO2 equivalent emissions by 30%

Medium: Reduce CO2 equivalent emissions by 20%

Long: Reduce CO2 equivalent emissions by 15%

Generation

Treatment

Generation

Disposal

Resourse value

Target #8

Reduce volume of waste disposed in the sanitary landfill

Short: 0%

Medium: 25%

Long: 50%

Target #9

Increase recycling rates

Short: 1% increase of overall recycling per year

Medium: 2% increase for overall recycling per year (for

the 3 first years only)

3. Financial Analysis

Comparison of 3 scenarios

		Landfill	L	andfill +MBT	Landfill+MBT +Biogas (MBT = 2017, Biogas = 2019)			
Revenue	\$ 563,895,001			563,895,001	\$	563,895,001		
Costs	+							
CAPEX	100							
Collection	\$	4,541,329	\$	4,541,329	\$	4,541,329		
Transfer	\$	1,783,445	\$	1,783,445	\$	1,783,445		
Landfill	\$	4,490,113	\$	4,490,113	\$	4,490,113		
MBT			\$	85,100,409	\$	85,100,409		
Biogas	1				\$	28,208,649		
OPEX	1							
Collection	\$	97,610,681	\$	97,610,681	\$	97,610,681		
Transfer	\$	36,225,467	\$	36,225,467	\$	36,225,467		
Landfill	\$	69,540,519	\$	69,540,519	\$	69,540,519		
MBT			\$	72,418,218	\$	72,418,218		
Biogas					\$	81,399,923		
Other	\$	18,506,106	\$	18,506,106	\$	18,506,106		
Total Expense	\$	232,697,660	\$	390,216,288	\$	499,824,860		
Net Income	\$	212,044,280	\$	175,685,433	\$	134,414,268		

81.14%

19.10%

8.78%

FIRR (2016 - 36)

Exorbitant FIRR for Scenario 1

Tariff Comparison - 3 scenarios

Landfill

Monthly		M	onthly	Weighted		
			ariff	cost	Annu	ial Tariff
Poor	30%	\$	0.75	0.225	\$	9
Medium - low income	40%	\$	1.50	0.6	\$	18
Medium - high income	20%	\$	2.50	0.5	\$	30
Commercial, industrial and high income	10%	\$	2.75	0.275	\$	33
Rural		\$	0.75		\$	9

20	Landfill+MBT Annual								andfill.	Land	till+MB1+
Land	fill+M					L	andfill	- 88	+MBT	Biogas	
			nthly ariff		Poor	\$	9	\$	21	\$	24
Poor	30%	\$	1.75	0.	Medium - low income	\$	18	\$	26	\$	36
Medium - low income		100	2.20		Medium - high income	s	30	Ś	42	3.	42
Medium - high income Commercial, industrial and high income			3.50 4.50		Commercial, industrial and high income	\$	33	\$	54	100	60
Rural		\$	1.00		Rural	\$	9	\$	12	\$	12
				11	% of Income		0.30%		0.47%		0.55%
Landfill+	MBT+E	_			FIRR	1	2.44%		10.92%		8.78%

25		M	onthly	Weighten	`		
St.		T	ariff	cost	Annu	al Tariff	
Poor	30%	\$	2.00	0.6	\$	24	
Medium - low income	40%	\$	3.00	1.2	\$	36	
Medium - high income	20%	\$	3.50	0.7	\$	42	
Commercial, industrial and high income	10%	\$	5.00	0.5	\$	60	
Rural		\$	1.00		\$	12	
				3.00	\$	36	0.55%

NEXT STEPS

- Decision making on preferred scenario
- Land acquisition
- Develop and implement communciations and engagement strategy
- Identify partner for capacity building
- Establish regional utility (legislation, resourcing, etc..)
- Secure funding/financing

THANK YOU!

