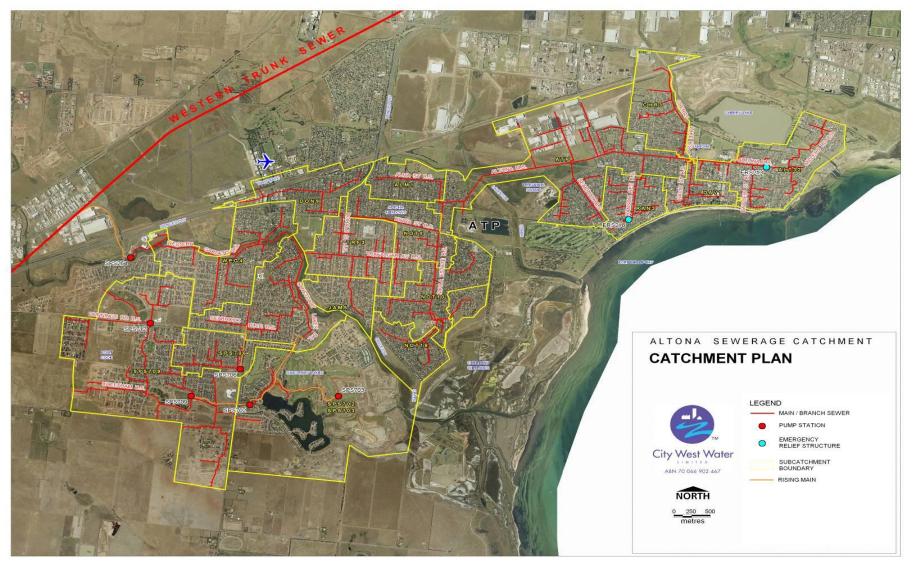
Wastewater Recovery

City West Water - Altona Treatment Plant Annmarie Tracey & Emily Rahles-Rahbula September 2014

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

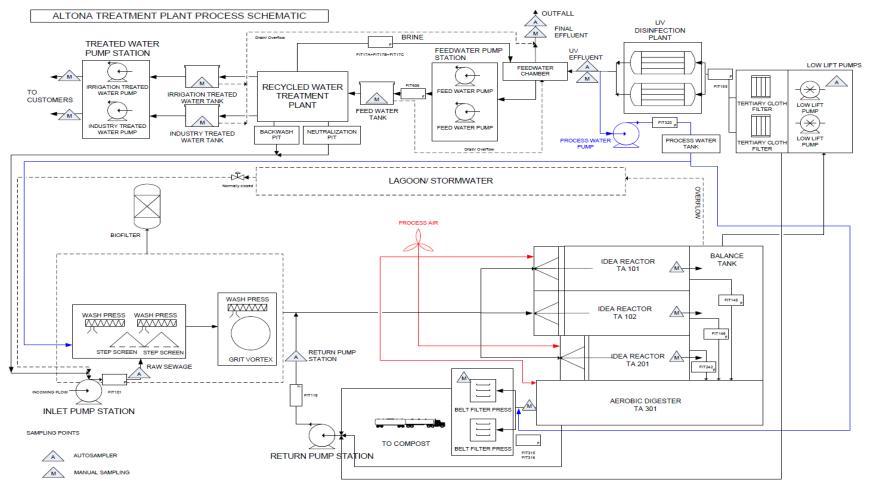
Overview

- ∧ Altona Wastewater Treatment Plant
- Altona Salt Reduction Plant
- ∧ Plant Tour



Altona Wastewater Treatment Plant

Annmarie Tracey– Manager Alternative Water Operations



Altona Catchment Area

Process Overview

City West Water™

Plant Information

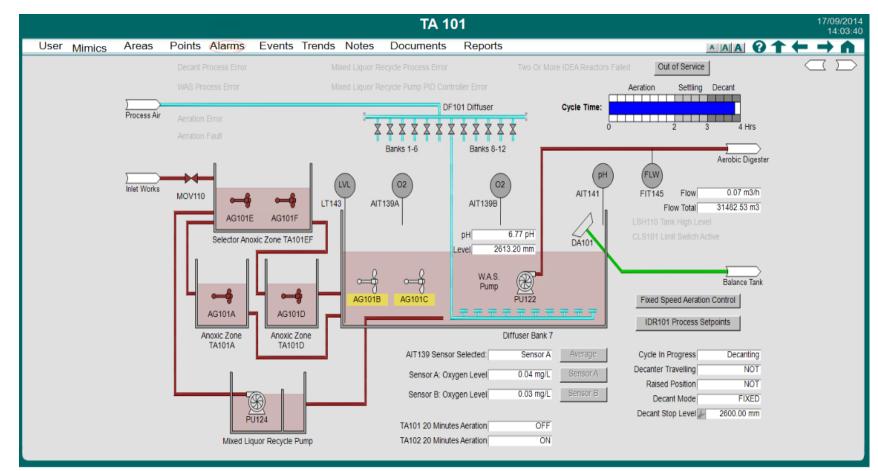
- ∧ Built in 1968 and upgraded in 2007
- ∧ Site covers 71 acres
- ∧ 16ML/d ADWF annually treats 4600 ML
- ∧ Treats sewage from 50,000 people
- Vtilises Biological IDEA Intermittent, Decanted, Extended Aeration Process
- Tertiary cloth filters and UV disinfection provide treatment to a Tertiary level
- Treated effluent serves as feedwater for the SRP rest is discharged to a submerged ocean outfall
- A Produces annually 900+ dry tonnes of biosolids

Inlet pump station

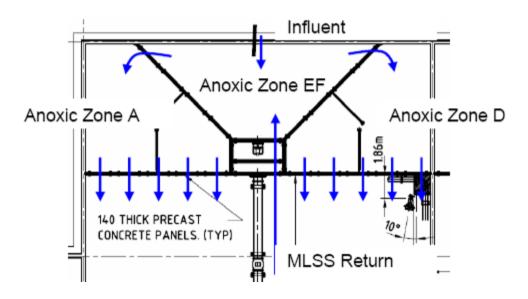
Raw Sewage Data


	BOD	Suspended Solids	Ammonia as N	Total Nitrogen	Total Phosphorus	Total Dissolved Solids
Median	160	130	37	47	6	4500
90 th percentile	198	250	43	62	7.3	4900

Figures shown above are for year 2013-14



Inlet Works



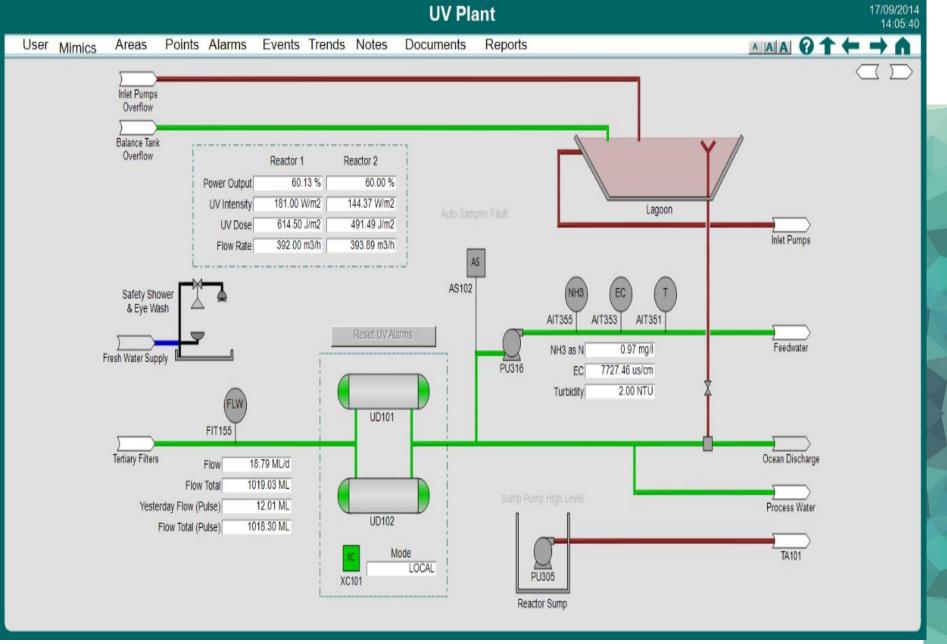
SCADA Screenshot

IDEA Reactors – Anoxic Zone

IDEA Reactors – Aeration Zone

IDEA Reactors -Aeration

Flow Balance Tank



Tertiary Cloth Filters

UV Disinfection

EPA Licence Limits

Indicator	Units	Limit Type	To Port Phillip Bay	1
Biochemical oxygen demand (5 day)	mg/L	Annual Median	8	
Biochemical oxygen demand (5 day)	mg/L	90th Percentile	16	
Suspended solids	mg/L	Annual Median	10	
Suspended solids	mg/L	90th Percentile	15	
Escherichia Coli	orgs /100ml	Annual Median	200	
Escherichia Coli	orgs /100ml	90th Percentile	1000	
Ammonia	mg/L	Annual Median	10	
Ammonia	mg/L	90th Percentile	NS	
Ammonia	mg/L	Maximum	24	
Total nitrogen	mg/L	Annual Median	50	
Total nitrogen	mg/L	90th Percentile	75	
Total phosphorus	mg/L	Annual Median	50	
Total phosphorus	mg/L	90th Percentile	75	7
рН	pH units	Range	6-9	
Total residual chlorine	mg/L	Maximum	1	
Flow rate	ML/day	Maximum	30	

Treated Discharge Outfall

Sludge Thickening & Dewatering

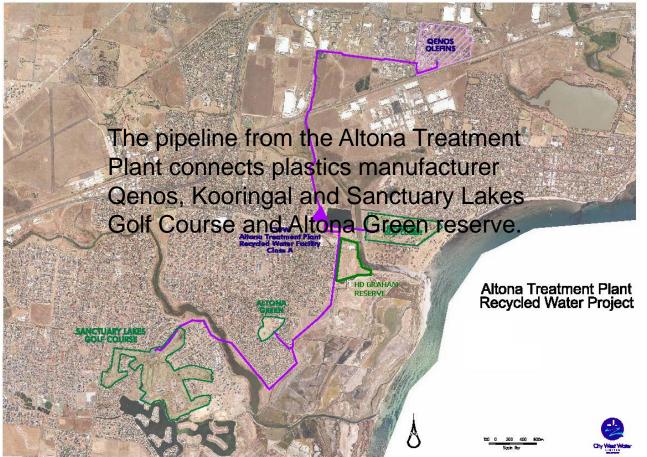
Pinegro

Composted biosolids windrows

Composted biosolids were used to establish the grass in the ATP garden area in 2013

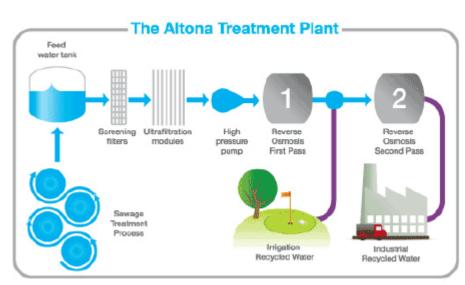
Altona Recycled Water Scheme

Emily Rahles-Rahbula – Manager Altona Salt Reduction Plant



Altona Salt Reduction Plant

- ∧ Recycled Water Scheme
- ∧ Treatment Process Steps and their purpose
- A Recycled Water Quality & Regulatory Requirements


Altona Recycled Water Scheme

The Plant

- ASRP or the Altona Salt
 Reduction Plant produces 2 grades of water for its customers:
 - 5.9MLD of Industrial Water
 - 3.1MLD of Irrigation Water
- The pipeline from the Altona Treatment Plant connects plastics manufacturer Qenos, Kooringal and Sanctuary Lakes Golf Course and Altona Green reserve.

Chemical Storage

- Chemical Storage Tanks
 - Sulphuric Acid
 - Hydrochloric Acid
 - Sodium Hypochlorite
 - Sodium Metabisulphite
 - Antiscalant
 - Caustic

Feedwater Storage

- A 3 ML balancing storage tank to collect decanted treated effluent from the ATP.
- Flow is pumped from the feed water chamber after tertiary cloth filters and UV disinfection.

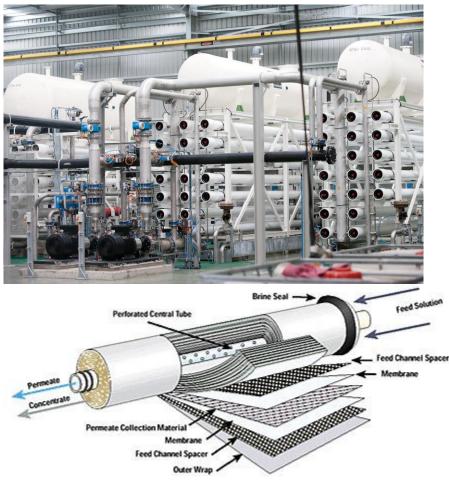
UF Feed Strainers

- ∧ UF Feed pumps
 - 3 duty / 1 standby feed
 pumps
- ∧ Coarse Screens
 - 1 duty / 1 standby
 - 250 micron screen
 - 24 individual cartridges / strainer
 - Automatic Backwashing based on timer &/or differential pressure.

Ultrafiltration

- 4 Trains, each with 108 modules (with expansion capacity to 120 modules)
- ∧ Outside-In hollow fiber membranes
- ∧ LRV=3.5 for protozoa and LRV=2.2 for viruses
- ∧ Automatic Clean In Place (CIP) System
- First of the Critical Control Points (TMP, Flux, Turbidity & PDT)

Cartridge Filters



∧ Coarse Screen Filters

- 5 micron cartridge filters
- 60 filter tubes per vessel
- 4 vessels in the system
- A Protection for the RO membranes
- Situated between low pressure and high pressure RO Feed Pumps.

Reverse Osmosis

- ∧ Salt Reduction Step.
- ∧ Three 1st Pass RO Trains
- ∧ Two 2nd Pass RO Trains
- ∧ RO First Pass is Responsible for Pathogen Removal (i.e., LRV=1.5)
- Second Critical Control Point (Log Reduction of EC; Recovery and Flux)
- Energy Recovery Unit on interstage line of the first pass membranes

Degasification

∧ Degasification – used to raise the pH of product water to neutral (i.e. pH = 7)

Chlorine Disinfection

- Final Step in Pathogen reduction uses Chlorine disinfection.
- Final Critical Control Point (i.e., Chlorine Contact Time = Chlorine Residual, Temp, pH, Flow)
- pH adjustment (using caustic and lime dosing) is also conducted at this stage.
- A Product Water Storage Tanks
 - 3ML Irrigation Water Storage
 - 3ML Industrial Water Storage

Product Water Quality

- Class A Recycled Water as per Victorian Department of Health Standards
- ∧ Requires approximately 6 Log Reduction in Pathogens across the plant
- ∧ Supported by a Recycled Water Quality Management System
- ∧ Uses HACCP principles
- Critical Control Points are monitored and when deemed out of desired range the plant will automatically stop.
- Continuous Integrity and Operational Monitoring
- A Daily Verification through internal laboratory testing

Product Water Delivery

- Qenos 3.7 Km of 300mm HDPE transfer pipe
- Sanctuary Lakes (+ Altona Green) 5km of 225mm + 400m of 100mm of HDPE transfer pipe
- Kooringal 700m of 150mm HDPE transfer pipe.

Thank You

