

Groundwater Innovations

S.A. Prathapar sprathapar@adb.org

ADB HQ, Manila, February 2018

The views expressed in this paper/presentation are the views of the author and do not necessarily reflect the views or policies of the Asian Development Bank (ADB), or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy of the data included in this paper/presentation and accepts no responsibility for any consequence of their use. Terminology used may not necessarily be consistent with ADB official terms.

Outline

- 1. Aquifers are unique natural endowments
- 2. If you can't measure You can't manage
- 3. Bandwidth of Aquifer Resilience
- 4. GWL : static, rise or fall PROBLEM!
 - 1. Waterlogging & Salinization
 - 2. Saline water intrusion & up-coning
 - 3. Flooding
- 5. Urban Water Management
 - 1. Managed Aquifer Recharge
 - 2. Green Disposal of Treated Waste Water
- 6. Possible areas of support from ADB to DMCs

Aquifers Store, Treat and Transfer Water

Inflow

- recharge from rainfall;
- recharge from floods;
- recharge from irrigation;
- recharge from farm tanks;
- recharge from rivers;
- inflow from other basins;

Outflow

- evapotranspiration from groundwater;
- pumping from groundwater;
- discharge to rivers;
- outflow to other basins; and

 ΔS = change in groundwater storage.

Except for pumping, none are directly measurable

THE

AUSTRALIAN

WATER PARTNERSHIP

IF YOU DON'T MEASURE IT YOU CAN'T MANAGE IT

waterpartnership.org.au

THE AUSTRALIAN WATER PARTNERSHIP

4

Groundwater Levels fluctuate!

THE AUSTRALIAN WATER PARTNERSHIP

ADB

Bandwidth of Aquifer Resilience Prathapar et al. 2015 ADB

THE AUSTRALIAN WATER PARTNERSHIP

In the absence of piezometric data Chinnasamy et al. 2015 ADB

Water Storage Anomaly 2003-2004, Gujarat, India

Water Storage Anomaly 2010-2011, Gujarat, India

GRACE Anomalies

THE AUSTRALIAN WATER PARTNERSHIP

waterpartnership.org.au

Rise, Static or Fall, PROBLEMS!

AUSTRALIAN U WATER PARTNERSHIP

waterpartnership.org.au

9

Managing Groundwater Induced Salinization

Sindh, Pakistan

NSW, Australia

Subsurface Evaporation Basins Surinaidu et al. 2016

- Saline groundwater is discharged through bare soil resulting in salinity.
- Bare soil evaporation rates are usually less than 10% PE.
- By re-directing saline groundwater to ponds where evaporation equals PE, area salinized will be reduced.
- Other benefits:
 - Agro-forestry/Fodder
 - Aquaculture
 - Industrial Salts

Managing Up-coning: Skimming Wells Asghar et al. 2001.

waterpartnership.org.au

When Groundwater Level Rises

Increasing Flood Resilience

THE AUSTRALIAN WATER PARTNERSHIP

Surface Drainage or Horizontal Sub-surface Drainage is infeasible in Flood Plains of Bihar, India

ADB

THE AUSTRALIAN WATER PARTNERSHIP

waterpartnership.org.au

14 14

waterpartnership.org.au

Rehabilitate Village Ponds in the EGP Okwany et al. 2015 ADB

	Total Tanks		Permanent Tanks		Temporary Tanks	
District	# Tanks	Area (ha)	# Tanks	Area (ha)	# Tanks	Area (ha)
Dhanusa	2858	547	1956	473	902	74
Dinajpur	22116	3239	12703	2555	9413	683
Kochbihar	14115	2097	2639	1146	11476	951
Madubhani	15561	2971	7519	2249	8042	722
Maldah	36415	7932	15812	4635	20603	3297
Purnia	9169	2205	1376	724	7793	1481
Rajshahi	41004	6550	27974	5382	13030	1168
Rongpur	14952	1834	4440	1077	10512	757
Saptari	2844	516	1848	426	996	90
Sunsari	1283	197	707	136	576	60

THE

Before

After

AUSTRALIAN WATER PARTNERSHIP

Managed Aquifer Recharge

AUSTRALIAN WATER PARTNERSHIP

Managing Groundwater Depletion ADB

Figure 12: Typical well hydrograph from USGS, Taher et al, 2007 [7]

Groundwater Levels in Kabul

Water Availability is Limited

Rainfall in Baluchistan, Pakistan Extreme Events in Punjab, India

THE AUSTRALIAN WATER PARTNERSHIP

Consider Aquifer Capacity

ADB

waterpartnership.org.au

THE

WATER PARTNERSHIP

AUSTRALIAN

May-Nov 2000

May-Nov 2008

Acknowledgement: Shah

waterpartnership.org.au

Kandeel Delay Action Dam at Muslim Bagh,

Balochistan

Acknowledgement: Ashraf

Managing Silt

Leaky Dam, Balochistan

Recharge Dam, Oman

MAR Seminar 25

waterpartnership.org.au

How to by-pass the silt deposition during inundation?

waterpartnership.org.au

Drain Accelerated Recharge: DARE Prathapar et al. 2004 ADB

27 Groundwater Recharge

waterpartnership.org.au

Velocity Vectors

THE AUSTRALIAN WATER PARTNERSHIP

ADB

Roof-top Rainwater Harvesting to increase storage and minimize sea water intrusion

THE AUSTRALIAN WATER PARTNERSHIP

ADB

TREATED WATER MANAGEMENT

AUSTRALIAN WATER PARTNERSHIP

waterpartnership.org.au

THE AUSTRALIAN WATER PARTNERSHIP

31 OWSC MAR Final Report

Treated Water Use in Greenhouses – Abu Dhabi

Excess TW Disposed

Greenhouse area irrigable with Excess TW

Treated Water in Conjunctive Use – Oman Khamisi et al (2012) ADB

Greywater Treatment and Reuse in Oman Prathapar et al. 2006 ADB

NEW CLARK CITY – PFS

Assessment of Water Demand

- Assessment of Surface Water Resources
- Assessment of Groundwater Resources
 - Quantity
 - Quality
- Assessment of Waste Water disposal options

 - Disposal to the River Irrigating Public Green Area Irrigated Agriculture Greenhouse Agriculture Aquaculture

 - Managed Aquifer Recharge

How can ADB help?

- Determination of measures for governments and communities to adopt
- DMCs have IDs and WSSDs but Groundwater Institutions are weak
- Groundwater monitoring program
- Increase awareness
- Develop and implement enforceable regulations
- Identify 'groundwater protection zones'.
- Encourage MAR in urban and rural areas.
- Encourage green solutions to dispose treated waste water

The Australian Water Partnership is supported by the Australian Government

