



# REGIONAL STEM SYMPOSIUM 2019 27 – 30 May 2019, Thailand

The *Regional STEM Symposium 2019* is a 4-day gathering of educators and education officials from Cambodia, India, the Kyrgyz Republic, Mongolia, the Philippines, Singapore, Thailand, Uzbekistan and Viet Nam.

This symposium is intended as a means for experts and participants to present current perspectives on the opportunities and challenges facing STEM education, from theoretical and practical standpoints, and critically evaluate the role of STEM education in the broader socio-economic sphere.

### SYMPOSIUM GOALS

Participants from the seven developing member countries are expected to use this symposium to evaluate their own countries' existing approach towards STEM education, and consider the perspectives shared by other participants and experts. Participants will also be expected to develop a pilot programme that incorporates practical deliverables in curriculum design and teacher training, with the aim of elevating STEM education in their country.

|                                                                                  | Objective(s) for participants                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| At least two Ministry<br>of Education<br>representatives                         | <ul> <li>To recognise the value of incorporating STEM to equip students with 21<sup>st</sup> century core competencies, and</li> <li>To consider policies to review curriculum design and teacher recruitment/deployment to achieve the intended outcomes</li> </ul>                 |
| At least two<br>representatives from<br>leading teacher<br>training institutions | <ul> <li>To design coursework and relevant professional development<br/>programmes to equip teachers of different levels of experience, with an<br/>appreciation for STEM education and specific pedagogies to better<br/>deliver the intended outcomes of STEM education</li> </ul> |

In view of this, each country should send the following composition of participants:



20 Upper Circular Road #02-21, The Riverwalk, Singapore 058416 | T: (65) 6672 6160 | F: (65) 6672 6189 | E: info@headfoundation.org





## SYMPOSIUM PROGRAMME

**Dates:** 27 – 30 May 2019 **Venue:** King Mongkut's University of Technology Thonburi's Knowledge Exchange for Innovation Center, Bangkok, Thailand

### Day 1: 27 May 2019, Monday

| Time     | Programme                                                                        |
|----------|----------------------------------------------------------------------------------|
| 9:00am   | Welcome by Dr Brajesh Panth, Asian Development Bank (ADB)                        |
| 9:05am   | Welcome by Mr Chng Kai Jun, The HEAD Foundation (THF)                            |
| 9:10am   | Welcome by Assoc Prof Bundit Thipakorn, King Mongkut's University of Technology  |
|          | Thonburi (KMUTT)                                                                 |
| 9:15am   | Welcome by Dr Poolsak Koseeyaporn, Office of National Higher Education, Science, |
|          | Research and Innovation Policy Council                                           |
| 9:45am   | Keynote: The raison d'être for STEM education in a changing landscape            |
|          | Prof Paul Teng, National Institute of Education International (NIEI), Singapore  |
| 11:15am  | Coffee break                                                                     |
| 11:45am  | STEM and gender                                                                  |
|          | Ms Maki Hayashikawa, UNESCO Bangkok                                              |
| 12:45pm  | Lunch break                                                                      |
| 2:00pm   | Country presentations                                                            |
|          | Each country to present for 20 minutes using the template in the resources       |
| 3:40pm   | Coffee break                                                                     |
| 4:00pm   | Country presentations                                                            |
|          | Each country to present for 20 minutes using the template in the resources       |
| 4:40pm – | Response panel                                                                   |
| 6:00pm   | Moderator: Prof Paul Teng, NIEI                                                  |

### Day 2: 28 May 2019, Tuesday

| Time    | Programme                                                                         |
|---------|-----------------------------------------------------------------------------------|
| 9:00am  | Visits to innovative Thai schools                                                 |
|         | - Rung Aroon School                                                               |
|         | - Darunsikkhalai School of Innovative Learning                                    |
| 12:00pm | Lunch talk: STEM education for sustainable development                            |
|         | Dr Sumate Tanchaeron, KMUTT Social Lab                                            |
| 1:30pm  | Incorporating STEM in the K-12 curriculum                                         |
|         | Presentations by:                                                                 |
|         | - Asst. Prof. Komkrit Chomsuwan, KMUTT                                            |
|         | - Dr Tan Mui Hua, Science Centre Singapore                                        |
| 3:00pm  | Coffee Break                                                                      |
| 3:30pm  | Incorporating STEM in the K-12 curriculum (cont'd)                                |
|         | Presentation by: Dr Goh Chor Boon, NIEI                                           |
|         |                                                                                   |
| 4.15pm- | Incorporating STEM in the K-12 curriculum (cont'd)                                |
| 5:00pm  | Roundtable chaired by Assoc Prof Bundit Thipakorn, KMUTT and Prof Paul Teng, NIEI |





### Day 3: 29 May 2019, Wednesday

| Time     | Programme                                                                           |
|----------|-------------------------------------------------------------------------------------|
| 9:00am   | STEM education frameworks for 21st century learning                                 |
|          | A/P Teo Tang Wee and A/P Tan Aik Ling, NIE                                          |
| 10:30am  | Coffee break                                                                        |
| 11:00am  | STEM instructional framework to promote integrated learning                         |
|          | A/P Teo Tang Wee and A/P Tan Aik Ling, NIE                                          |
| 12:00pm  | Preparing STEM educators in Thailand                                                |
|          | Dr Parinya San, KMUTT                                                               |
| 12:30pm  | Response panel                                                                      |
|          | Moderator: Dr Brajesh Panth, ADB                                                    |
| 1:00pm   | Lunch break                                                                         |
| 2:00pm   | Breakout sessions                                                                   |
|          | Each country to develop a pilot programme that incorporates practical deliverables  |
|          | in curriculum design and teacher training, with the aim of elevating STEM education |
|          | in their country                                                                    |
| 5:00pm – | Bringing Computer Science to life through Microsoft MakeCode and the micro:bit      |
| 6:00pm   | Ms Aleandre Kwan, Microsoft Philanthropies                                          |

## Day 4: 30 May 2019, Thursday

| Time     | Programme                                                                         |
|----------|-----------------------------------------------------------------------------------|
| 9:00am   | STEM education and professional development: trends, challenges and lessons       |
|          | learned                                                                           |
|          | Dr Pratchayapong Yasri and Mr Wisarut Winyu-ekasit, Learn Education               |
| 10:00am  | Capacitating teachers through competency-based ICT training programmes            |
|          | Ms Mel Tan, UNESCO Bangkok                                                        |
| 10:30am  | Coffee break                                                                      |
| 11:00am  | Creating a holistic STEM lesson; lessons learn from teaching STEM to marginalised |
|          | youths                                                                            |
|          | Ms Dawn Teo, PHi Life Center                                                      |
| 11:30am  | Empowering future ready youth                                                     |
|          | Ms Aleandre Kwan, Microsoft Philanthropies                                        |
| 12:00pm  | Response panel                                                                    |
|          | LearnEd, Microsoft Philanthropies, PHi Life Center, UNESCO                        |
|          | Moderator: Mr Vignesh Naidu, The HEAD Foundation                                  |
| 12:30pm  | Lunch break                                                                       |
| 1:30pm   | Country presentations                                                             |
|          | Each country to present for 15 minutes, followed by a 10-minute discussion        |
| 3:10pm   | Coffee break                                                                      |
| 3:40pm   | Country presentations (cont'd)                                                    |
|          | Each country to present for 15 minutes, followed by a 10-minute discussion        |
| 5:00pm   | Certificate presentation                                                          |
| 5:45pm – | Closing remarks                                                                   |
| 6:00pm   |                                                                                   |





## REGIONAL STEM SYMPOSIUM 2019 SYMPOSIUM RESOURCES

Participants are to bring their laptops and materials for the symposium.

### Day 1 Presentation Template

Participants are to discuss within their teams and with their ADB Country focal persons and prepare their slides in advance. Participants are to keep their presentations to 10 slides in 15 minutes and include the following information and chart their current stage of curriculum design (1.1-1.4).

Kindly provide references and information sources in the presentation.

### 1.1 General Information

| Country:                                                   |  |
|------------------------------------------------------------|--|
| Population size:                                           |  |
| Size of K-12 population:                                   |  |
| Main language of instruction:                              |  |
| Main foreign language(s) taught:                           |  |
| Schooling survival rates (primary i.e. grade 6):           |  |
| Schooling survival rates<br>(secondary i.e. grade 10)      |  |
| % of students who pursue tertiary education:               |  |
| Male:                                                      |  |
| Female:                                                    |  |
| Schooling survival rates (pre-<br>tertiary i.e. grade 12): |  |
| Schooling gender ratios:                                   |  |
| Teacher-student ratios:                                    |  |





### 1.2 STEM Curriculum

| Is STEM part of the national K-12 curriculum? If yes, please |  |
|--------------------------------------------------------------|--|
| elaborate. If no, are you aware of                           |  |
| any plans to include STEM in the                             |  |
| national K-12 curriculum within                              |  |
| the next 5 years?                                            |  |
| Name, and briefly describe, your                             |  |
| country's most recent curriculum                             |  |
| innovation? When was it                                      |  |
| introduced?                                                  |  |
| Is there presently an emphasis on                            |  |
| critical and creative thinking, use of ICT, problem solving, |  |
| collaborative learning etc in the                            |  |
| classroom?                                                   |  |
| In your view, what are the                                   |  |
| perceived obstacles towards the                              |  |
| successful integration of STEM                               |  |
| into your national K-12                                      |  |
| curriculum?                                                  |  |
| How best can these obstacles be                              |  |
| overcome?                                                    |  |
| Any other information to share                               |  |
|                                                              |  |

### 1.3 Teachers (K-12)

| Total number of teachers:          |  |
|------------------------------------|--|
| % of teachers with Master's        |  |
| Degrees and above:                 |  |
| % of teachers with a Bachelor's    |  |
| Degree                             |  |
| % of teacher with less than a      |  |
| Bachelor's Degree:                 |  |
| % of teachers teaching at least    |  |
| one STEM subject (i.e. Science,    |  |
| Engineering, Technology,           |  |
| Mathematics)                       |  |
| List down and briefly describe the |  |
| key (official) teacher training    |  |
| programmes (Include details on     |  |
| its duration, notable features and |  |
| instances of classroom exposure):  |  |
| What are the strengths of these    |  |
| programmes?                        |  |
| What are the weaknesses of         |  |
| these programmes?                  |  |





| Is there a policy, standards or<br>acts that assure the quality of the<br>teacher training programme? If<br>yes, please describe.                                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Are there programmes<br>specifically tailored for STEM<br>educators?                                                                                                |  |
| Do teachers have access to<br>regular professional<br>development? If yes, what are<br>they? (frequency and duration,<br>main providers, mode of training,<br>etc.) |  |
| In your view, what are the<br>perceived obstacles towards<br>preparing teachers to teach STEM<br>and/or integrating STEM in their<br>curriculum?                    |  |
| How best can these obstacles be overcome?                                                                                                                           |  |

ADB



#### **1.4 STEM Education: Implementation Progress**

Participants to chart their current stage of STEM curriculum design using the diagram below. The country can be on a continuum eg. Country A is somewhere between level 2-3, leaning closer towards 3.

| Level 1*                                                                                                                                                                                                               | Level 2                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Level 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STEM education is subject-<br>specific with emphasis on<br>content knowledge<br>No standard set of<br>benchmarks or outcomes<br>Little to no attempt to draw<br>connections between<br>earning and real-world<br>ssues | <ul> <li>STEM education is subject-specific with some attempt to incorporate interdisciplinary problem-solving and applied learning</li> <li>Some attempt to design benchmarks and outcomes, although these may be restricted solely to the STEM subjects and specific educational levels</li> <li>Some attempt to organise extra-curricular programmes to promote STEM and expose students to applied learning of STEM to real-world issues</li> </ul> | <ul> <li>STEM education is subject-specific with applied learning opportunities, with good effort put into drawing out common learning across subjects, e.g. 21st Century Competencies</li> <li>Clear benchmarks and outcomes to guide curriculum design and teaching at each educational level, with some attempt to harmonise across other levels</li> <li>In-curricular and extra-curricular programmes to promote STEM and expose students to applied learning of STEM to real-world issues</li> </ul> | <ul> <li>Interdisciplinary approach<br/>to STEM education, tackling<br/>issues with focus on<br/>developing 21st Century<br/>Competencies and<br/>responsible citizens</li> <li>Clear benchmarks and<br/>outcomes to guide<br/>curriculum design and<br/>teaching across the entire<br/>education system (K-12 to<br/>university)</li> <li>In-curricular and extra-<br/>curricular programmes to<br/>promote STEM and expose<br/>students to applied learning<br/>of STEM to real-world issues</li> </ul> |

\*Some countries at the lower levels of implementation may still be addressing basic challenges such as insufficient resourcing, student and/or teacher attraction and retention, urban-rural or gender disparities, etc.